Advertisement

Radiochemistry

, 51:469 | Cite as

Mechanism of UO2(NO3)2·6H2O decomposition under the action of microwave radiation: Part 2

  • S. A. Kulyukhin
  • A. N. Kamenskaya
  • I. A. Rumer
Article

Abstract

Products of UO2(NO3)2·6H2O decomposition under the action of microwave radiation (MWR) were studied by thermal gravimetric analysis, X-ray phase analysis, IR spectroscopy, and electron microscopy. The results of physicochemical studies of these decomposition products were compared to the published data for various uranium compounds, including UO2(NO3)2·6H2O. Apart from gaseous products, the final products of decomposition of 2–10 g of UO2(NO3)2·6H2O under the action of MWR for 35 min (the maximal process temperature, 170–320°C, is attained in the first 2–5 min of irradiation) are uranyl hydroxonitrate UO2(OH)NO3 and uranium trioxide UO3 or their hydrates. The results obtained are consistent with the mechanism suggested in our previous paper and involving the reactions (1) UO2(NO3)2·6H2O → UO2(OH)NO3 + 5H2O + HNO3 and (2) UO2(OH)NO3 → UO3 + HNO3. The physicochemical study confirms the conclusions on the composition of products of UO2(NO3)2·6H2O decomposition under the action of MWR, made previously on the basis of chemical studies. The only precursor of UO3 in microwave treatment of UO2(NO3)2·6H2O is UO2(OH)NO3 (or its hydrates). This is the main difference between the courses of uranyl nitrate decomposition under the conditions of microwave and convection heating. In the latter case, uranyl nitrate and its hydrates also participate in the formation of UO3.

PACS numbers

61.10.Nz 81.70.Pg 82.30.Lp 

References

  1. 1.
    Kulyukhin, S.A., Kamenskaya, A.N., and Lavrikov, V.A., Radiokhimiya, 2009, vol. 51, no. 3, pp. 228–233.Google Scholar
  2. 2.
    Kalekar, B.B., Rajagopalan, K.V., Pillai, C.G.S., et al., J. Nucl. Mater., 2000, vol. 279, no. 2/3, pp. 245–252.CrossRefGoogle Scholar
  3. 3.
    Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Uranium Technology), Moscow: Atomizdat, 1964.Google Scholar
  4. 4.
    Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473.CrossRefGoogle Scholar
  5. 5.
    Rajagopalan, K.V., Ravindram, P.V., and Radhakrishman, T.P., J. Therm. Anal., 1995, vol. 44, pp. 89–96.CrossRefGoogle Scholar
  6. 6.
    Franklin, M.L. and Flanagan, T.B., J. Chem. Soc., Dalton Trans., 1972, no. 1, pp. 192–196.Google Scholar
  7. 7.
    The Chemistry of the Actinide Elements, Katz, J.J., Seaborg, G.T., and Morss, L.R., Eds., Springer, 1986.Google Scholar
  8. 8.
    Dash, S., Kamruddin, M., Beru, S., et al., J. Nucl. Mater., 1999, vol. 264, no. 3, pp. 271–282.CrossRefGoogle Scholar
  9. 9.
    Woodhead, J.L., Deane, A.M., Fox, A.C., and Fletcher, J.M., J. Inorg. Nucl. Chem., 1966, vol. 28, pp. 2175–2185.CrossRefGoogle Scholar
  10. 10.
    Deane, A.M., J. Inorg. Nucl. Chem., 1961, vol. 21, pp. 238–252.CrossRefGoogle Scholar
  11. 11.
    JCPDS-Int. Centre for Diffraction Data, PDF 77-0121, UO2(NO3)2·6H2O.Google Scholar
  12. 12.
    JCPDS—Int. Centre for Diffraction Data, PDF 27-0936, UO2(NO3)2·6H2O.Google Scholar
  13. 13.
    JCPDS—Int. Centre for Diffraction Data, PDF 10-0309, UO3·0.8H2OGoogle Scholar
  14. 14.
    JCPDS—Int. Centre for Diffraction Data, PDF 47-0196, UO3·H2O.Google Scholar
  15. 15.
    JCPDS—Int. Centre for Diffraction Data, PDF 34-0630, U(OH)O2(NO3)·2H2O.Google Scholar
  16. 16.
    JCPDS—Int. Centre for Diffraction Data, PDF 70-0176, (UO2)2(OH)2(NO3)2·4H2O.Google Scholar
  17. 17.
    JCPDS—Int. Centre for Diffraction Data, PDF 29-1379, (UO2)2(OH)2(NO3)2·4H2O.Google Scholar
  18. 18.
    JCPDS—Int. Centre for Diffraction Data, PDF 47-1002, UO3·0.3H2O.Google Scholar
  19. 19.
    JCPDS—Int. Centre for Diffraction Data, PDF 43-0346, UO3·0.393H2O.Google Scholar
  20. 20.
    JCPDS—Int. Centre for Diffraction Data, PDF 11-0028, UO3·0.5H2O.Google Scholar
  21. 21.
    JCPDS—Int. Centre for Diffraction Data, PDF 43-0364, UO3·2H2O.Google Scholar
  22. 22.
    JCPDS—Int. Centre for Diffraction Data, PDF 16-0204, UO2(OH)(NO3)·3H2O.Google Scholar
  23. 23.
    JCPDS—Int. Centre for Diffraction Data, PDF 16-0203, UO2(OH)(NO3)·4H2O.Google Scholar
  24. 24.
    JCPDS—Int. Centre for Diffraction Data, PDF 70-0760, (UO2)3O(OH)3(H2O)6(NO3)·4H2O.Google Scholar
  25. 25.
    Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963. Translated under the title Infrakrasnye spektry neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir: 1966, pp. 223–224.Google Scholar
  26. 26.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed. Translated under the title IK spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir: 1991, pp. 283–285.Google Scholar
  27. 27.
    Nakanishi, K., Infrared Absorption Spectroscopy, Practical, San Francisco: Holden-Day, 1962.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. A. Kulyukhin
    • 1
  • A. N. Kamenskaya
    • 1
  • I. A. Rumer
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations