, Volume 51, Issue 3, pp 262–268 | Cite as

Mechanism of UO2(NO3)2·6H2O decomposition under the action of microwave radiation

  • S. A. Kulyukhin
  • A. N. Kamenskaya
  • V. A. Lavrikov


The effect of microwave radiation (MWR) on the decomposition of UO2(NO3)2·6H2O was studied. Determination of [UO 2 2+ ] and [NO 3 ], and also of the molar ratio NO 3 : UO 2 2+ in various fractions of the decomposition product showed that the mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR differs from the mechanism of its decomposition under common convection heating. The main precursor of UO3 as product of UO2(NO3)2·6H2O decomposition under the action of MWR is uranyl hydroxonitrate UO2(OH)NO3 formed already in the first minutes of the irradiation. In contrast to the thermolysis under convection heating, UO2(NO3)2 or its hydrates were not detected as intermediates. The mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR can be presented by the reactions UO2(NO3)2·6H2O → UO2(OH)NO3 + 5H2O + HNO3 and UO2(OH)NO3 → UO3 + HNO3. The solubility of UO2(OH)NO3 in H2O at 20°C was estimated experimentally at 6.83 × 10−2 M.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arzhannikov, A.V., Akhmetov, T.D., Kalinin, P.V., et al., A Rig for Strudying UHF Heating and Transformations of Substances, Preprint of the Budker Inst. of Nuclear Physics, Siberian Branch, Russian Acad. Sci., no. IYaF 2004-2.Google Scholar
  2. 2.
    Vanetsev, A.S. and Tret’yakov, Yu.D., Usp. Khim., 2007, vol. 76, no. 5, pp. 435–453.Google Scholar
  3. 3.
    Tret’yakov, Yu.D., Usp. Khim., 2004, vol. 73, no. 9, pp. 899–916.Google Scholar
  4. 4.
    Vanetsev, A.S., Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2004.Google Scholar
  5. 5.
    Haque, K.E., Int. J. Miner. Process., 1999, vol. 57, pp. 1–24.CrossRefGoogle Scholar
  6. 6.
    Vanetsev, A.S., Ivanov, V.K., and Tret’yakov, Yu.D., Dokl. Ross. Akad. Nauk, 2002, vol. 387, no. 5, pp. 640–642.Google Scholar
  7. 7.
    Zaitsev, D.D., Kazin, P.E., Vanetsev, A.S., et al., Dokl. Ross. Akad. Nauk, 2005, vol. 402, no. 1, pp. 49–51.Google Scholar
  8. 8.
    Komarov, V.I., Molokhov, M.N., Kharitonov, K.A., et al., At. Energ., 2005, vol. 98, no. 4, pp. 288–293.Google Scholar
  9. 9.
    Ohtsuka, K., Ohuchi, J., and Takanashi, Y., US Patent 4 364 859, December 21, 1982.Google Scholar
  10. 10.
    Akiyama, H., Todokoro, A., and Takanobu, O., US Patent 4 563 355, January 7, 1986.Google Scholar
  11. 11.
    Hayano, N., Kawato, Y., Arishige, T., et al., US Patent 4 727 231, February 23, 1988.Google Scholar
  12. 12.
    Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., et al., J. Nucl. Mater., 1998, vol. 254, pp. 55–64.CrossRefGoogle Scholar
  13. 13.
    Iikura, T., Toyohara, M., and Nakakuki, I., in Advanced Technologies from Toshiba. Nuclear Energy Systems and Services, Tokyo: Toshiba, 2008, pp. 40–47.Google Scholar
  14. 14.
    Haas, P.A., Am. Ceram. Bull., 1979, vol. 58, no. 9, p. 873.Google Scholar
  15. 15.
    Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473.CrossRefGoogle Scholar
  16. 16.
    Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium, New York: McGraw-Hill, 1951.Google Scholar
  17. 17.
    Lister, A.J. and Richardson, R.J., The Preparation of Uranium Trioxide by Thermal Decomposition of Uranyl Nitrate, Harwell: Atomic Energy Research Establishment, 1954, AERE C/R 1874.Google Scholar
  18. 18.
    Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Uranium Technology), Moscow: Atomizdat, 1964.Google Scholar
  19. 19.
    Schaal, G. and Faron, R., US Patent 5 628 048, May 6, 1997.Google Scholar
  20. 20.
    Cordfunka, E.H.P., J. Inorg. Nucl. Chem., 1972, vol. 34, pp. 531–534.CrossRefGoogle Scholar
  21. 21.
    Perrin, A., Acta Crystallogr., Sect. B, 1976, vol. 32, pp. 1658–1661.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. A. Kulyukhin
    • 1
  • A. N. Kamenskaya
    • 1
  • V. A. Lavrikov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations