, Volume 50, Issue 5, pp 450–454 | Cite as

Crystal structure of KNa3[(UO2)5O6(SO4)]

  • S. V. Krivovichev


The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.

PACS numbers

61.10.Nz 61.66.Fn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007.Google Scholar
  2. 2.
    Sullivan, J.C., Hindman, J.C., and Zielen, A.J. J. Am. Chem. Soc., 1961, vol. 83, pp. 3373–3378.CrossRefGoogle Scholar
  3. 3.
    Krot, N.N. and Grigor’ev, M.S., Usp. Khim., 2004, vol. 73, pp. 94–106.Google Scholar
  4. 4.
    Kubatko, K.-A. and Burns, P.C., Inorg. Chem., 2006, vol. 45, pp. 10277–10281.CrossRefGoogle Scholar
  5. 5.
    Sullens, T.A., Jensen, R.A., Shvareva, T.Y., and Albrecht-Schmitt, T.E., J. Am. Chem. Soc., 2004, vol. 126, pp. 2676–2677.CrossRefGoogle Scholar
  6. 6.
    Obbade, S., Dion, C., Rivenet, M., et al., J. Solid State Chem., 2004, vol. 177, pp. 2058–2064.CrossRefGoogle Scholar
  7. 7.
    Obbade, S., Yagoubi, S., Dion, C., et al., J. Solid State Chem., 2004, vol. 177, pp. 1681–1694.CrossRefGoogle Scholar
  8. 8.
    Alekseev, E.V., Krivovichev, S.V., Depmeier, W. et al., Angew. Chem. Int. Ed., 2006, vol. 43, pp. 7233–7235.CrossRefGoogle Scholar
  9. 9.
    Chippindale, A.M., Dickens, P.G., Flynn, G.J. and Stuttard, G.P., J. Mater. Chem., 1995, vol. 5, pp. 141–146.CrossRefGoogle Scholar
  10. 10.
    Burns, P.C., Rev. Mineral., 1999, vol. 38, pp. 23–90.Google Scholar
  11. 11.
    Mikhailov, Yu.N., Kokh, L.A., Kuznetsov, V.G. et al., Koord. Khim., 1977, vol. 3, pp. 508–511.Google Scholar
  12. 12.
    Norquist, A.J., Doran, M.B., and O’Hare, D., Acta Crystallogr., Sect. E, 2003, vol. 59, pp. m373–m375.CrossRefGoogle Scholar
  13. 13.
    Hayden, L.A. and Burns, P.C., Can. Mineral., 2002, vol. 40, pp. 211–216.CrossRefGoogle Scholar
  14. 14.
    Hayden, L.A. and Burns, P.C., J. Solid State Chem., 2002, vol. 163, pp. 313–318.CrossRefGoogle Scholar
  15. 15.
    Krivovichev, S.V. and Burns, P.C., Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007, pp. 95–182.CrossRefGoogle Scholar
  16. 16.
    Brandenburg, N.P. and Loopstra, B.O., Acta Crystallogr., Sect. B., 1978, vol. 34, pp. 3734–3736.CrossRefGoogle Scholar
  17. 17.
    Serezhkin, V.N., Boiko, N.V., and Makarevich, L.G., Kristallografiya, 1980, vol. 25, pp. 858–860.Google Scholar
  18. 18.
    Alekseev, E.V., Krivovichev, S.V., Malcherek, T., and Depmeier, W., Inorg. Chem., 2007, vol. 46, pp. 8442–8444.CrossRefGoogle Scholar
  19. 19.
    Forbes, T.Z., Burns, P.C., Skanthakumar, S., and Soderholm, L., J. Am. Chem. Soc., 2007, vol. 129, pp. 2760–2761.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • S. V. Krivovichev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations