Radiochemistry

, Volume 50, Issue 1, pp 103–108 | Cite as

Dynamics of radiostrontium leaching from radioactively contaminated floodplain soils of the Yenisei River

  • E. K. Legin
  • Yu. I. Trifonov
  • M. L. Khokhlov
  • D. N. Suglobov
  • E. E. Legina
  • V. K. Legin
Article

Abstract

Gleyzation-mediated leaching of radiostrontium from floodplain soils of the Krasnoyarsk Mining and Chemical Combine (MCC) activity zone [Atamanovskii Island (front part), Oseredysh Island (front part), and Berezovyi Island (rear part)] is studied with model systems. Leaching of radiostrontium from waterlogged soils is analyzed in terms of the model of anaerobic biosolubilization of gel films. The leaching of radiostrontium is found to correlate with that of iron, confirming the cosolubilization model. Addition of glucose (0.5%) as a stimulant for growth of iron-reducing microorganisms increases the dynamic coefficient of radiostrontium leaching, particularly in soils with lower organic matter content. The model experiments showed that the radiostrontium leaching rate from floodplain soil is higher by 2–3 orders of magnitude than that of radio-cesium, suggesting the possibility of escape of radiostrontium from the floodplain of the Yenisei River with the intrasoil runoff. This conclusion is supported by the experimental data on the 90Sr/137Cs ratio in the floodplain of the Yenisei River downstream of MCC (0.01–0.1).

PACS numbers

89.60.-k 

References

  1. 1.
    Dobrovol’skii, G.V., Pochvy rechnykh poim tsentra Russkoi ravniny (Soils of River Floodplains of the Central Russian Plain), Moscow: Mosk. Gos. Univ., 1968.Google Scholar
  2. 2.
    Tyuryukanov, A.N., Izv. Vses. Geol. O-va., 1964, no. 4, pp. 306–312.Google Scholar
  3. 3.
    Nosov, A.V., Ashanin, M.V., Ivanov, A.B., and Martynova, F.M., At. Energ., 1993, vol. 74, no. 2, pp. 144–150.Google Scholar
  4. 4.
    Mikhailovskaya, L.N., Molchanova, I.V., Pozolotina, V.N., and Karavaeva, E.N., Pochvovedenie, 2002, no. 9, pp. 1129–1133.Google Scholar
  5. 5.
    Mokrov, Yu.G., Reconstruction and Prognosis of Radioactive Contamination of the Techa River, Doctoral (Phys.-Mat.) Dissertation, Ozersk, 2005.Google Scholar
  6. 6.
    Morris, K., Brian, N.D., and Liven, F.R., J. Environ. Radioact., 2001, vol. 56, pp. 259–267.CrossRefGoogle Scholar
  7. 7.
    Kaurichev, I.S., Teoriya i praktika metoda sorbtsionnykh lizimetrov v ekologicheskikh issledovaniyakh (Theory and Practice of the Sorption Lysimetric Method in Environmental Research), Moscow: Mosk. Sel’skokhoz. Akad., 1986.Google Scholar
  8. 8.
    Legin, E.K., Suglobov, D.N., Trifonov, Yu.I., et al., Radiokhimiya, 2003, vol. 45, no. 1, pp. 91–96.Google Scholar
  9. 9.
    Legin, E.K., Trifonov, Yu.I., Khokhlov, M.L., et al., C. R. Acad. Sci., Chim., 2004, vol. 7, pp. 1173–1178.CrossRefGoogle Scholar
  10. 10.
    Legin, E.K., Suglobov, D.N., and Khokhlov, M.L., Ross. Khim. Zh., 2005, vol. 49, no. 2, pp. 127–130.Google Scholar
  11. 11.
    Legin, E.K., Trifonov, Yu.I., Khokhlov, M.L., et al., Radiokhimiya, 2007, vol. 49, no. 2, pp. 173–178.Google Scholar
  12. 12.
    Pavlotskaya, F.I., Karyakin, A.V., et al., Geokhimiya, 1976, no. 7, pp. 1092–1099.Google Scholar
  13. 13.
    Drozhko, E.G., Ivanov, I.A., Samsonov, B.G., et al., Vopr. Radiats. Besopasn., 1996, no. 2, pp. 22–25.Google Scholar
  14. 14.
    Kuznetsova, V.A., Onoshko, M.P., and Generalova,.A., Radiokhimiya, 2003, vol. 45, no. 5, pp. 466–470.Google Scholar
  15. 15.
    Rowell, D.L., Soil Science: Methods and Applications, Harlow, Essex: Longman, 1994.Google Scholar
  16. 16.
    Kostenkov, N.M. and Strel’chenko, N.E., Okislitel’novosstanovitel’noe sostoyanie pereuvlazhnennykh pochv i transformatsiya nekotorykh elementov (Redox Condition of Waterlogged Soils and Transformation of Certain Elements), Vladivostok: Dal’nauka, 1992.Google Scholar
  17. 17.
    Pavlotskaya, F.I., Migratsiya radioaktivnykh produktov global’nykh vypadenii v pochvakh (Migration in Soils of Radioactive Products from Global Fallout), Moscow: Atomizdat, 1974.Google Scholar
  18. 18.
    Fedotov, G.N., Pozdnyakov, A.I., and Zhukov, E.I., Pochvovedenie, 2004, no. 6, pp. 691–696.Google Scholar
  19. 19.
    Legin, E.K., Trifonov, Yu.I., Khokhlov, M.L., and Suglobov, D.N., Radiokhimiya, 1998, vol. 40, no. 2, pp. 183–188.Google Scholar
  20. 20.
    Zavarzin, G.A. and Kolotilova, N.N., Vvedenie v prirodovedcheskuyu mikrobiologiyu (Introduction to Natural Historical Microbiology), Moscow: Knizhnyi Dom, 2001.Google Scholar
  21. 21.
    Vinogradskii, S.N., Mikrobiologiya pochvy (Soil Microbiology), Moscow: Akad. Nauk SSSR, 1952.Google Scholar
  22. 22.
    Lovely, D.R., Microbiol. Rev., 1991, vol. 55, no. 2, pp. 259–287.Google Scholar
  23. 23.
    Zaidel’man, F.R., Protsess gleeobrazovaniya i ego rol’ v formirovanii pochv (Gleyzation and Its Contribution to Soil Formation), Moscow: Mosk. Gos. Univ., 1998.Google Scholar
  24. 24.
    Kuznetsov, Yu.V., Legin, V.K., Strukov, V.N., et al., Radiokhimiya, 2000, vol. 42, no. 5, pp. 470–477.Google Scholar
  25. 25.
    Alekin, O.A., Osnovy gidrokhimii (The Principles of Hydrochemistry), Leningrad: Gidrometeoizdat, 1970.Google Scholar
  26. 26.
    Plekhanova, I.O., Pochvovedenie, 1999, no. 5, pp. 568–574.Google Scholar
  27. 27.
    Plekhanova, I.O., Pochvovedenie, 2003, no. 11, pp. 1326–1334.Google Scholar
  28. 28.
    Aturova, V.P., Kovalenko, V.V., Kurtakov, S.V., and Chevelyev, A.V., Extended Abstracts, 5th Int. Conf. on Nuclear and Radiochemistry, Pontresina (Switzerland), September 3–8, 2000, vol. 2, pp. 409–411.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. K. Legin
    • 1
  • Yu. I. Trifonov
    • 1
  • M. L. Khokhlov
    • 1
  • D. N. Suglobov
    • 1
  • E. E. Legina
    • 1
  • V. K. Legin
    • 1
  1. 1.Khlopin Radium Institute, Research and Production AssociationFederal State Unitary EnterpriseSt. PetersburgRussia

Personalised recommendations