Radiochemistry

, Volume 48, Issue 6, pp 552–560 | Cite as

Geometric isomerism of layered complexes of uranyl selenates: Synthesis and structure of (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)] and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)](H2O)

  • S. V. Krivovichev
  • I. G. Tananaev
  • B. F. Myasoedov
Article

Abstract

New uranyl selenates with organic cations (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)] (I) and (H3O)[C5H14N]2[(UO2)3(SeO4)4(HSeO4)(H2O)](H2O) (II) were synthesized by evaporation of aqueous solutions and studied. Compound I has monoclinic symmetry, space group C2/c, a = 16.7572(13), b = 11.7239(12), c = 19.0490(13) Å, β = 98.875(6)°, V = 3697.6(5) Å3, Z = 4. The crystal structure was solved by the direct method and refined to R1 = 0.085 for 2868 reflections with |Fhkl| ≥ 4σ|Fhkl|. Compound II has monoclinic symmetry, space group P21/n, a = 10.8252(10), b = 19.0007(10), c = 18.6463(15) Å, β = 100.324(7)°, V = 3773.2(5) Å3, Z = 4. The crystal structure was solved by the direct method and refined to R1 = 0.084 for 5721 reflections with |Fhkl| ≥ 4σ|Fkhl|. The structures of I and II are based on layered complexes [(UO2)3(SeO4)4(HSeO4)(H2O)]3− formed by combination of uranyl pentagonal bipyramids and selenate tetrahedra. H3O+ cations, water molecules, and protonated methylbutylamine cations are located in the interlayer space. Geometric isomerism of two-dimensional complexes [(UO2)3(SeO4)5(H2O)] in the structures of uranyl selenates was found and described.

PACS numbers

61.10.Nz 61.66.Fn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krivovichev, S.V., Kahlenberg, V., Kaindl, R., et al., Angew. Chem., Int. Ed., 2005, vol. 44, pp. 1134–1136.CrossRefGoogle Scholar
  2. 2.
    Krivovichev, S.V., Kahlenberg, V., Tananaev, I.G., et al., J. Am. Chem. Soc. 2005, vol. 127, pp. 1072–1073.CrossRefGoogle Scholar
  3. 3.
    Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., et al., Radiokhimiya, 2005, vol. 47, no. 6, pp. 481–491.Google Scholar
  4. 4.
    Krivovichev, S.V. and Tananaev, I.G., Ross. Khim. Zh., 2005, vol. 49, no. 2, pp. 115–118.Google Scholar
  5. 5.
    Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., and Myasoedov, B.F., Dokl. Ross. Akad. Nauk, 2005, vol. 403, no. 3, pp. 349–352.Google Scholar
  6. 6.
    Krivovichev, S.V., Tananaev, I.G., Kahlenberg, V., and Myasoedov, B.F., Radiokhimiya, 2006, vol. 48, no. 3, pp. 197–201.Google Scholar
  7. 7.
    Sheldrick, G.M., Program for the Refinement of Crystal Structures, Göttingen, 1997.Google Scholar
  8. 8.
    Lundgren, J.O. and Taesler, I., Acta Crystallogr., Sect. B., 1979, vol. 35, pp. 2384–2386.CrossRefGoogle Scholar
  9. 9.
    Kemnitz, E., Werner, C., and Troyanov, S.I., Acta Crystallogr., Sect. C, 1996, vol. 52, pp. 2665–2666.CrossRefGoogle Scholar
  10. 10.
    Troyanov, S.I., Werner, C., Kemnitz, E., and Worzala, H., Z. Anorg. Allg. Chem., 1995, vol. 621, pp. 1617–1624.CrossRefGoogle Scholar
  11. 11.
    Kemnitz, E., Werner, C., Troyanov, S.I., and Worzala, H., Z. Anorg. Allg. Chem., 1994, vol. 620, pp. 1921–1924.CrossRefGoogle Scholar
  12. 12.
    Stiewe, A., Kemnitz, E., and Troyanov, S.I., Z. Anorg. Allg. Chem., 1999, vol. 625, pp. 329–335.CrossRefGoogle Scholar
  13. 13.
    Mercier, R., Douglas, J., Jones, P.G., and Sheldrick, G.M., Acta Crystallogr., Sect. C, 1983, vol. 39, pp. 145–147.CrossRefGoogle Scholar
  14. 14.
    Troyanov, S.I., Stiewe, A., and Kemnitz, E., Z. Naturforsch. (B), 1996, vol. 51, pp. 19–24.Google Scholar
  15. 15.
    Wickleder, M.S., Z. Anorg. Allg. Chem., 2001, vol. 627, pp. 1439–1440.CrossRefGoogle Scholar
  16. 16.
    Wickleder, M.S., Z. Anorg. Allg. Chem., 1999, vol. 625, pp. 474–480.CrossRefGoogle Scholar
  17. 17.
    Krivovichev, S.V., Kahlenberg, V., Kaindl, R., and Mersdorf, E., Eur. J. Inorg. Chem., 2005, pp. 1653–1656.Google Scholar
  18. 18.
    Mit’kovskaya, E.V., Mikhailov, Yu.N., Gorbunova, Yu.E., et al., Zh. Neorg. Khim., 2003, vol. 48, no. 5, pp. 755–757.Google Scholar
  19. 19.
    Blatov, V.A., Serezhkina, L.B., Serezhkin, V.N., and Trunov, V.K., Koord. Khim., 1988, vol. 14, no. 12, pp. 1705–1708.Google Scholar
  20. 20.
    Krivovichev, S.V. and Kahlenberg, V., Radiokhimiya, 2005, vol. 47, no. 5, pp. 412–414.Google Scholar
  21. 21.
    Krivovichev, S.V. and Kahlenberg, V., Radiokhimiya, 2005, vol. 47, no. 5, pp. 415–418.Google Scholar
  22. 22.
    Krivovichev, S.V. and Kahlenberg, V., Z. Anorg. Allg. Chem., 2005, vol. 631, pp. 739–744.CrossRefGoogle Scholar
  23. 23.
    Potapov, V.M., Stereokhimiya (Stereochemistry), Moscow: Khimiya, 1976.Google Scholar
  24. 24.
    Flapan, E., When Topology Meets Chemistry. A Topological Look at Molecular Chirality, Cambridge: Cambridge Univ. Press, 2000.Google Scholar
  25. 25.
    Moore, P.B., N. Jb. Miner. Mh., 1970, vol. 1970, pp. 163–173.Google Scholar
  26. 26.
    Moore, P.B., N. Jb. Miner. Mh., 1975, vol. 1975, pp. 148–159.Google Scholar
  27. 27.
    Krivovichev, S.V., Crystallogr. Rev., 2004, vol. 10, pp. 185–232.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. V. Krivovichev
    • 1
  • I. G. Tananaev
    • 2
  • B. F. Myasoedov
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations