Advertisement

Doklady Mathematics

, Volume 99, Issue 2, pp 132–136 | Cite as

On the Complexity of Reductive Group Actions over Algebraically Nonclosed Field and Strong Stability of the Actions on Flag Varieties

  • V. S. ZhgoonEmail author
  • F. Knop
MATHEMATICS
  • 14 Downloads

Abstract

We prove new results that generalize Vinberg’s complexity theorem for the action of reductive group on an algebraic variety over an algebraically nonclosed field. We provide new results on strong k-stability for actions on flag varieties are given.

Notes

ACKNOWLEDGMENTS

The work of V.S. Zhgoon was supported by the project “Study of Group Algebraic Varieties and Their Relations to Algebra, Geometry, and Number Theory,” project no. 0065-2018-0019.

REFERENCES

  1. 1.
    E. B. Vinberg, Funct. Anal. Appl. 20 (1), 1–11 (1986).CrossRefGoogle Scholar
  2. 2.
    A. Borel and J. Tits, Inst. Hautes Etudes Sci. Publ. Math. 27, 55–150 (1965).CrossRefGoogle Scholar
  3. 3.
    T. A. Springer, Linear Algebraic Groups (Springer Science and Business Media, Berlin, 2010).Google Scholar
  4. 4.
    G. Kempf, Ann. Math. 108 (2), 299–316 (1978).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Krötz and H. Schlichtkrull, J. Eur. Math. Soc. 18 (6), 1391–1403 (2016).CrossRefGoogle Scholar
  6. 6.
    F. Knop and B. Krötz, Preprint. arXiv:1604.01005 (2016).Google Scholar
  7. 7.
    J. P. Serre, Galois Cohomology (Springer Science and Business Media, Berlin, 2013).Google Scholar
  8. 8.
    J. E. Humphreys, Linear Algebraic Groups (Springer-Verlag, New York, 1975).CrossRefzbMATHGoogle Scholar
  9. 9.
    V. P. Platonov, Sib. Mat. Zh. 10, 1084–1090 (1969).Google Scholar
  10. 10.
    A. Borel and J. Tits, J. Invent. Math. 12 (2), 95–104 (1971).CrossRefGoogle Scholar
  11. 11.
    B. Yu. Weisfeiler, Usp. Mat. Nauk 21 (2), 222–223 (1966).Google Scholar
  12. 12.
    R. W. Richardson, Bull. Austral. Math. Soc. 25 (1), 1–28 (1982).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. L. Popov, Math. USSR-Izv. 6 (2), 367–379 (1972).CrossRefGoogle Scholar
  14. 14.
    V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory (Academic, New York, 1993).zbMATHGoogle Scholar
  15. 15.
    V. L. Popov and E. B. Vinberg, “Invariant theory,” Algebraic Geometry IV, Encyclopedia of Mathematical Sciences (Springer-Verlag, Berlin, 1994), Vol. 55, pp. 123–278.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Scientific Research Institute for System Analysis, Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Friedrich-Alexander Universitat Erlangen-Nurnberg Erlangen and NurembergGermany

Personalised recommendations