Doklady Mathematics

, Volume 98, Issue 3, pp 619–621 | Cite as

On the Distribution of the Maximum k-Degrees of the Binomial Random Graph

  • M. E. Zhukovskii
  • I. V. Rodionov


For the maximum number Δn of common neighbors of k vertices in the random graph G(n, p), there exist functions an and σn such that \(\frac{\Delta_n - a_n}{\sigma_n}\) converges in distribution to a random variable having the standard Gumbel distribution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bollobás, Discrete Math. 32, 201–203 (1980).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. E. Zhukovskii and A. M. Raigorodskii, Russ. Math. Surv. 70 (1), 33–81 (2015).CrossRefGoogle Scholar
  3. 3.
    N. Alon and J. H. Spencer, The Probabilistic Method, 3rd ed. (Wiley, New York, 2008).CrossRefzbMATHGoogle Scholar
  4. 4.
    B. Bollobás, Random Graphs, 2nd ed. (Cambridge Univ. Press, Cambridge, 2001).CrossRefzbMATHGoogle Scholar
  5. 5.
    S. Janson, T. Luczak, and A. Rucinski, Random Graphs (Wiley, New York, 2000).CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Nadarajah and K. Mitov, Extremes 5, 287–294 (2002).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer-Verlag, New York, 1983).CrossRefzbMATHGoogle Scholar
  8. 8.
    B. Bollobás, Discrete Math. 33, 1–19 (1981).MathSciNetCrossRefGoogle Scholar
  9. 9.
    O. Riordan and L. Warnke, Random Struct. Algorithms 46 (2), 391–395 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  2. 2.Russian Presidential Academy of National Economy and Public AdministrationMoscowRussia
  3. 3.Caucasus Mathematical CenterAdyghe State UniversityMaikopRussia
  4. 4.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations