Doklady Mathematics

, Volume 98, Issue 3, pp 603–606 | Cite as

Application of the Variational Method for Solving Inverse Problems of Optimal Control

  • V. V. TernovskiiEmail author
  • M. M. Khapaev
  • T. M. Khapaeva


For optimal control problems, a new approach based on the search for an extremum of a special functional is proposed. The differential problem is reformulated as an ill-posed variational inverse problem. Taking into account ill-posedness leads to a stable numerical minimization procedure. The method developed has a high degree of generality, since it allows one to find special controls. Several examples of interest concerning the solution of classical optimal control problems are considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions (Gordon and Breach, London, 1995).zbMATHGoogle Scholar
  2. 2.
    A. B. Kurzhanski, Control and Observation under Uncertainty (Nauka, Moscow, 1977) [in Russian].Google Scholar
  3. 3.
    M. M. Khapaev and T. M. Khapaeva, Math. Notes 97 (4), 616–620 (2015).MathSciNetCrossRefGoogle Scholar
  4. 4.
    T. M. Khapaeva, Appl. Comput. Math. 3 (4), 117–120 (2014).CrossRefGoogle Scholar
  5. 5.
    C. Marchal, J. Optim. Theory Appl. 11 (5), 441–468 (1973).CrossRefGoogle Scholar
  6. 6.
    G. Borg, Acta Math. 78 (1), 1–96 (1946).MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. E. Okhotsimskii, Prikl. Mat. Mekh. 10 (2), 251–272 (1946).MathSciNetGoogle Scholar
  8. 8.
    R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections (Smithsonian Institution, 1919), Vol. 71, no.2.Google Scholar
  9. 9.
    A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1979).zbMATHGoogle Scholar
  10. 10.
    M. I. Zelikin and L. A. Manita, J. Math. Sci. 151 (6), 3506–3542 (2008).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Ternovskii
    • 1
    Email author
  • M. M. Khapaev
    • 1
  • T. M. Khapaeva
    • 1
  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations