Doklady Mathematics

, Volume 98, Issue 3, pp 648–651 | Cite as

Artificial Dissipation Coefficients in Regularized Equations of Supersonic Aerodynamics

  • T. G. Elizarova
  • I. A. Shirokov
Mathematical Physics


A method for introducing artificial dissipation coefficients into a numerical algorithm based on the quasi-gasdynamic system of equations is proposed. The method applies to aerodynamic flows with large Mach and Reynolds numbers. Simulation results for the supersonic flow over the X-43 aircraft are presented as an illustration. The pressure distribution over the aircraft surface is obtained, which can be used to calculate the aerodynamic characteristics of X-43.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (CIMNE, Barcelona, 2008).Google Scholar
  2. 2.
    T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Dordrecht, 2009).CrossRefzbMATHGoogle Scholar
  3. 3.
    Yu. V. Sheretov, Regularized Fluid Dynamic Equations (Tver. Gos. Univ., Tver, 2016) [in Russian].Google Scholar
  4. 4.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1998).Google Scholar
  5. 5.
    R. D. Present, Kinetic Theory of Gases (McGraw-Hill, New York, 1958).Google Scholar
  6. 6.
    A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).CrossRefzbMATHGoogle Scholar
  7. 7.
    T. G. Elizarova and I. A. Shirokov, Regularized Equations and Examples of Their Application in Gasdynamic Flow Simulation (MAKS, Moscow, 2017) [in Russian].Google Scholar
  8. 8.
    A. L. Zheleznyakova and S. T. Surzhikov, Toward the Creation of a Virtual GLA Model (Inst. Prikl. Mekh. Ross. Akad. Nauk, Moscow, 2013) [in Russian].Google Scholar
  9. 9.
    S. V. Polyakov, T. A. Kudryashova, and A. A. Sverdlin, Mat. Model. 20 (7), 13–22 (2008).MathSciNetGoogle Scholar
  10. 10.
    K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow.
  11. 11.
    I. A. Shirokov and T. G. Elizarova, J. Turbulence 15 (10), 707–730 (2014). Scholar
  12. 12.
    I. A. Shirokov and T. G. Elizarova, Comput. Math. Model. 28 (1), 37–60 (2016).CrossRefGoogle Scholar
  13. 13.
    M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, and M. A. Istomina, Comput. Fluids 166, 163–175 (2018).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations