Advertisement

Doklady Mathematics

, Volume 98, Issue 2, pp 472–474 | Cite as

Heterogeneous Computing in Resource-Intensive CFD Simulations

  • S. A. Soukov
  • A. V. Gorobets
Mathematics

Abstract

A software package implementing a fully heterogeneous mode of computations on CPUs and GPU accelerators for efficient use of hybrid supercomputers has been developed at the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences. The package involves a distributed preprocessor ensuring work with fine unstructured meshes. Combined compression of the grid topology is used to reduce the amount of storage required for superlarge grid data. The study involves petascale computational resources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gorobets, S. Soukov, and P. Bogdanov, Comput. Fluids 173, 171–177 (2018). doi 10.1016/j.compfluid.2018.03.011MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer, “Towards green aviation with Python at petascale,” SC16: International Conference for High Performance Computing, Networking, Storage, and Analysis (2016), pp. 1–11. doi 10.1109/SC.2016.1.10.1109/SC.2016.1Google Scholar
  3. 3.
    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, Berlin, 2009). doi 10.1007/b79761CrossRefzbMATHGoogle Scholar
  4. 4.
    B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).Google Scholar
  5. 5.
    P. B. Bogdanov, A. V. Gorobets, and S. A. Soukov, Comput. Math. Math. Phys. 53 (8), 1183–1194 (2013).MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. A. Soukov, A. V. Gorobets, and P. B. Bogdanov, Math. Models Comput. Simul. 10 (2), 135–144 (2018).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. E. Borisov, A. A. Davydov, A. E. Lutskii, and Ya. V. Khankhasaeva, Preprint No. 130, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2017).Google Scholar
  8. 8.
    S. A. Soukov, Preprint No. 108, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2016).Google Scholar
  9. 9.
    E. N. Golovchenko and M. V. Yakobovskii, Vychisl. Metod. Program. 16 (4), 507–517 (2015).Google Scholar
  10. 10.
    E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in ACM Proceedings of the 24th National Conference (ACM, New York, 1969), pp. 157–172.Google Scholar
  11. 11.
    S. Gumhold, S. Guthe, and W. Straßer, “Tetrahedral mesh compression with the cutborder machine,” in Proceedings of the Conference on Visualization (VIS’99) (San Francisco, CA, 1999), pp. 51–58.Google Scholar
  12. 12.
    M. Isenburg and P. Alliez, “Compressing hexahedral volume meshes,” in Proceedings of Pacific Graphics (Beijing, 2002), pp. 284–293.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal Research Center Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations