Advertisement

Doklady Mathematics

, Volume 98, Issue 2, pp 468–471 | Cite as

An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28

  • V. P. Platonov
  • G. V. Fedorov
Mathematics

Abstract

We have found an infinite family of nonisomorphic hyperelliptic curves of genus two over the field of rational numbers whose Jacobian varieties contain rational points of order 28. Previously, only 10 such curves were known.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Mazur, Lect. Notes Math. 601, 107–148 (1977).CrossRefGoogle Scholar
  2. 2.
    V. P. Platonov, Russ. Math. Surv. 69 (1), 1–34 (2014).CrossRefGoogle Scholar
  3. 3.
    E. W. Howe, Bull. London Math. Soc. 47, 127–135 (2015).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. P. Platonov and M. M. Petrunin, Dokl. Math. 85 (2), 286–288 (2012).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. P. Platonov, V. S. Zhgun, and M. M. Petrunin, Dokl. Math. 87 (3), 318–321 (2013).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. P. Platonov and M. M. Petrunin, Dokl. Math. 91 (2), 220–221 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. P. Platonov and G. V. Fedorov, Sb. Math. 209 (4), 519–559 (2018).MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Leprevost, C. R. Acad. Sci. Paris Ser. 1 Math. 313, 451–454 (1991).MathSciNetGoogle Scholar
  9. 9.
    F. Leprevost, C. R. Acad. Sci. Paris Ser. 1 Math. 313, 771–774 (1991).MathSciNetGoogle Scholar
  10. 10.
    F. Leprevost, C. R. Acad. Sci. Paris Ser. 1 Math. 316, 819–821 (1993).MathSciNetGoogle Scholar
  11. 11.
    E. V. Flynn, J. Number Theory 36, 257–265 (1990).MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Ogawa, Proc. Jpn. Acad. Ser. A Math. Sci. 70, 295–298 (1994).CrossRefGoogle Scholar
  13. 13.
    J. Igusa, Ann. Math. 72, 612–649 (1960).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Scientific Research Institute for System AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations