Advertisement

Doklady Mathematics

, Volume 98, Issue 2, pp 444–447 | Cite as

Superfast Iterative Solvers for Linear Matrix Equations

  • E. A. Mikrin
  • N. E. Zubov
  • D. E. Efanov
  • V. N. Ryabchenko
Mathematics

Abstract

Superfast algorithms for solving large systems of linear equations are developed on the basis of an original method for multistep decomposition of a linear multidimensional dynamical system. Examples of analytical synthesis of iterative solvers for matrices of the general form and for large numerical systems of linear algebraic equations are given. For the analytical case, it is shown that convergence occurs at the second iteration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Helmke and J. Jordan, “Control and stabilization of linear equation solvers,” Lecture Notes in Control and Information Sciences (Springer-Verlag, Berlin, 2010), pp. 73–82.Google Scholar
  2. 2.
    U. Helmke and J. Jordan, Proc. Appl. Math. Mech. 5 (1), 163–164 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Embree, SIAM Rev. 45, 259–266 (2003).MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. E. Zubov, E. A. Mikrin, and V. N. Ryabchenko, Matrix Methods in the Theory and Practice of Aircraft Control Systems (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow), 2016) [in Russian].Google Scholar
  5. 5.
    R. E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol. 2: Nonlinear Processes (Academic, New York, 1971).zbMATHGoogle Scholar
  6. 6.
    K. Gustafsson, M. Lundh, and G. S. Söderlind, BIT 28, 270–287 (1988).MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Gustafsson, ACM Trans. Math. Software 17 (4), 533–554 (1991).MathSciNetCrossRefGoogle Scholar
  8. 8.
    U. Helmke and P. A. Fuhrmann, Syst. Control Lett. 41, 57–66 (2000).CrossRefGoogle Scholar
  9. 9.
    U. Helmke, J. Jordan, and A. Lanzon, “A control theory approach to linear equation solvers,” Proceedings of 17th International Symposium on Mathematical Theory of Network and Systems (MTNS), Kyoto, Japan, 2006.Google Scholar
  10. 10.
    U. Helmke and F. Wirth, Syst. Control Lett. 43, 9–23 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Bhaya and E. Kaszkurewicz, Control Perspectives on Numerical Algorithms and Matrix Problems (SIAM, Philadelphia, 2006).CrossRefzbMATHGoogle Scholar
  12. 12.
    K. Kashima and Y. Yamamoto, Automatica 43 (7), 1156–1164 (2007).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Wakasa and Y. Yamamoto, “An iterative method for solving linear equations by using robust methods,” Proceedings of SICE First Annual Conference on Control Systems (2001), pp. 451–454.Google Scholar
  14. 14.
    B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].Google Scholar
  15. 15.
    V. L. Girko, Theory Probab. Appl. 29, 694–706 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Mikrin
    • 1
    • 2
  • N. E. Zubov
    • 1
    • 2
  • D. E. Efanov
    • 1
  • V. N. Ryabchenko
    • 1
    • 3
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Korolev Rocket and Space Corporation “Energia,”Korolev, Moscow oblastRussia
  3. 3.National Research University “Moscow Power Engineering Institute,”MoscowRussia

Personalised recommendations