Advertisement

Doklady Mathematics

, Volume 98, Issue 2, pp 416–420 | Cite as

On Kolmogorov’s ε-Entropy for a Compact Set of Infinitely Differentiable Aperiodic Functions (Babenko’s Problem)

  • V. N. Belykh
Mathematics

Abstract

The asymptotics of Kolmogorov’s ε-entropy for a compact set of infinitely differentiable aperiodic functions that are boundedly embedded in the space of continuous functions on a finite interval is calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 108 (3), 385–388 (1956).MathSciNetGoogle Scholar
  2. 2.
    K. I. Babenko, Basics of Numerical Analysis (Nauka, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    A. G. Vitushkin, Dokl. Akad. Nauk SSSR 117 (5), 745–747 (1957).MathSciNetGoogle Scholar
  4. 4.
    K. I. Babenko, Nauchn. Dokl. Vyssh. Shkoly, No. 2, 9–16 (1958).Google Scholar
  5. 5.
    V. D. Erokhin, Dokl. Akad. Nauk SSSR 120 (5), 949–952 (1958).MathSciNetGoogle Scholar
  6. 6.
    H. Widom, J. Approx. Theory 5, 343–361 (1972).CrossRefGoogle Scholar
  7. 7.
    V. N. Belykh, Sib. Math. J. 52 (3), 381–393 (2011).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2: Properties and Operations (Fizmatgiz, Moscow, 1958; Academic, New York, 1968).Google Scholar
  9. 9.
    A. G. Vitushkin, Estimation of Complexity of Tabulation Problem (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  10. 10.
    B. S. Mityagin, Russ. Math. Surv. 16 (4), 59–127 (1961).CrossRefGoogle Scholar
  11. 11.
    W. F. Newns, Phil. Trans. R. Soc. London A 245, 429–468 (1953).MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. N. Belykh, Sib. Math. J. 46 (3), 373–385 (2005).CrossRefGoogle Scholar
  13. 13.
    H. F. Sinwel, J. Approx. Theory 32 (1), 1–8 (1981).MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Carleman, Les fonctions quasi analytiques (Paris, 1926).zbMATHGoogle Scholar
  15. 15.
    V. N. Belykh, Dokl. Phys. 62 (4), 213–217 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations