Advertisement

Doklady Mathematics

, Volume 98, Issue 1, pp 330–333 | Cite as

Stable Cohomology of Spaces of Non-Resultant Systems of Homogeneous Polynomials in ℝn

  • V. A. Vassiliev
Mathematics

Abstract

Stable rational cohomology groups of spaces of non-resultant homogeneous polynomial systems of growing degree in ℝn are calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Math. Notes 5 (2), 138–140 (1969).CrossRefGoogle Scholar
  2. 2.
    C. F. Bödigheimer, F. Cohen, and L. Taylor, Topology 28 (1), 111–123 (1989).MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. R. Cohen, R. L. Cohen, B. M. Mann, and R. L. Milgram, Acta Math. 166, 163–221 (1991).MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. R. Cohen, Lect. Notes Math. 533, 207–353 (1976).CrossRefGoogle Scholar
  5. 5.
    D. B. Fuks and V. A. Rokhlin, Beginner’s Course in Topology: Geometric Chapters (Nauka, Moscow, 1977; Springer-Verlag, Berlin, 1984).zbMATHGoogle Scholar
  6. 6.
    B. Knudsen, Alg. Geom. Topol. 17, 3137–3187 (2017), arXiv:1405.6696.CrossRefGoogle Scholar
  7. 7.
    A. Kozlowski and K. Yamaguchi, J. Math. Soc. Jpn. 52 (4), 949–959 (2000).CrossRefGoogle Scholar
  8. 8.
    J.-P. Serre, Ann. Math. 54, 425–505 (1951).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications (Am. Math. Soc., Providence, RI, 1992).CrossRefGoogle Scholar
  10. 10.
    V. A. Vassiliev, Arnold Math. J. 1 (3), 233–242 (2015).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. A. Vassiliev, Proc. Steklov Inst. Math. 290, 197–209 (2015). arXiv: 1501.06063.MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. A. Vassiliev, Izv. Math. 80 (4), 791–810 (2016). arXiv: 1412.8194.MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. A. Vassiliev, Dokl. Math. 96 (3), 616–619 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations