Advertisement

Doklady Mathematics

, Volume 97, Issue 3, pp 236–239 | Cite as

Embeddings for Weighted Spaces of Functions of Positive Smoothness on Irregular Domains into Lebesgue Spaces

  • O. V. Besov
Mathematics
  • 12 Downloads

Abstract

For weighted spaces of functions of positive smoothness on irregular domains, embedding theorems into weighted Lebesgue spaces are proved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Besov, Sb. Math. 192 (3), 323–346 (2001).MathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Kilpeläinen and J. Malý, Z. Anal. Anwend. 19 (2), 369–380 (2000).CrossRefGoogle Scholar
  3. 3.
    D. A. Labutin, Proc. Steklov Inst. Math. 227, 163–172 (1999).MathSciNetGoogle Scholar
  4. 4.
    O. V. Besov, Math. Notes 96 (3), 326–331 (2014).MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. V. Besov, Proc. Steklov Inst. Math. 289, 96–103 (2015).MathSciNetCrossRefGoogle Scholar
  6. 6.
    O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems (Wiley, New York, 1978/1979; Nauka, Moscow, 1996), Vols. 1, 2.zbMATHGoogle Scholar
  7. 7.
    O. V. Besov, Math. Notes 103 (3), 348–356 (2018).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type (Addison Wesley, New York, 1998).zbMATHGoogle Scholar
  9. 9.
    E. M. Stein and G. Weiss, J. Math. Mech. 8 (2), 263–284 (1959).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations