Advertisement

Doklady Mathematics

, Volume 97, Issue 2, pp 144–146 | Cite as

Certain Reductions of Hitchin Systems of Rank 2 and Genera 2 and 3

  • O. K. Sheinman
Mathematics
  • 11 Downloads

Abstract

Certain reductions of Hitchin systems of rank 2 and genera 2 and 3 are considered, which are shown to give integrable systems of two (respectively, three) interacting points on the line. It is shown that the reduced systems are particular cases of an integrable system related to the Lagrange interpolation polynomial. The admissibility of the reduction is proved using computer techniques. A reference to published software programs is given in the text.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Buchstaber, Proc. Steklov Inst. Math. 294, 176–200 (2016).CrossRefGoogle Scholar
  2. 2.
    K. Gawedzki and P. Tran-Ngog-Bich, J. Math. Phys. 41, 4695–4712 (2000). arXiv:hep-th/9803101.MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. van Geemen and E. Previato, Duke Math. J. 85, 659–683 (1996).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. M. Krichever, Commun. Math. Phys. 229, 229–269 (2002). Hep-th/0108110.CrossRefGoogle Scholar
  5. 5.
    O. K. Sheinman, Current Algebras on Riemann Surfaces (Walter de Gruyter, Berlin, 2012).CrossRefzbMATHGoogle Scholar
  6. 6.
    O. K. Sheinman, Theor. Math. Phys. 185 (3), 1816–1831 (2015).CrossRefGoogle Scholar
  7. 7.
    O. K. Sheinman, Proc. Steklov Inst. Math. 290, 191–201 (2015).CrossRefGoogle Scholar
  8. 8.
    O. K. Sheinman, Moscow Math. J. 15 (4), 833–846 (2015).MathSciNetGoogle Scholar
  9. 9.
    O. K. Sheinman, Russ. Math. Surv. 71 (1), 109–156 (2016). arXiv: 1602.04320.MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. N. Tyurin, Am. Math. Transl. Ser. 2 63, 245–279 (1967).Google Scholar
  11. 11.
    O. K. Sheinman, arXiv:1709.06803 [math-ph].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations