Advertisement

Doklady Mathematics

, Volume 97, Issue 1, pp 32–34 | Cite as

The Kato Conjecture for Elliptic Differential-Difference Operators with Degeneration in a Cylinder

  • A. L. SkubachevskiiEmail author
Mathematics

Abstract

Second-order elliptic differential-difference operators with degeneration in a cylinder associated with closed densely defined sectorial sesquilinear forms in L2(Q) are considered. These operators are proved to satisfy the Kato conjecture on the square root of an operator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Agranovich and A. M. Selitskii, Funct. Anal. Appl. 47 (2), 83–95 (2013).MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Auscher, S. Hofman, A. McIntosch, and P. Tchamitchian, J. Evolut. Equations 1 (4), 361–385 (2001).CrossRefGoogle Scholar
  3. 3.
    T. Kato, J. Math. Soc. Jpn. 13 (3), 246–274 (1961).CrossRefGoogle Scholar
  4. 4.
    T. Kato, J. Math. Soc. Jpn. 14 (2), 242–248 (1962).CrossRefGoogle Scholar
  5. 5.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).CrossRefzbMATHGoogle Scholar
  6. 6.
    J. L. Lions, J. Math. Soc. Jpn. 14 (2), 233–241 (1962).CrossRefGoogle Scholar
  7. 7.
    J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (Dunod, Paris, 1968; Mir, Moscow, 1971).zbMATHGoogle Scholar
  8. 8.
    A. McIntosh, Proc. Am. Math. Soc. 32 (2), 430–434 (1972).Google Scholar
  9. 9.
    A. M. Selitskii, Math. Notes 94 (3), 444–447 (2013).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications (Birkhäuser, Basel, 1997).zbMATHGoogle Scholar
  11. 11.
    A. L. Skubachevskii, Trudy Mosk. Mat. O–va 59, 240–285 (1998).Google Scholar
  12. 12.
    A. L. Skubachevskii, Russ. Math. Surv. 71 (5), 801–906 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.RUDN UniversityMoscowRussia

Personalised recommendations