Doklady Mathematics

, Volume 96, Issue 2, pp 503–505 | Cite as

The minimum-cost transformation of graphs

  • K. Yu. Gorbunov
  • V. A. Lyubetsky


A complete proof that algorithms proposed by the authors solve the problem of minimum-cost transformation of a graph into another graph is given. The problem is solved both by a direct algorithm of linear complexity and by a reduction to quadratic integer linear programming.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yancopoulos, O. Attie, and R. Friedberg, Bioinformatics, No. 21, 3340–3346 (2005).CrossRefGoogle Scholar
  2. 2.
    K. Yu. Gorbunov and V. A. Lyubetsky, in CEUR Workshop Proceedings (CEUR-WS.Org): Selected Papers of the First International Scientific Conference Convergent Cognitive Information Technologies (Convergent 2016), Moscow, Russia, 2016 (Moscow, 2016), Vol. 1763, pp. 162–172.Google Scholar
  3. 3.
    M. D. V. Braga, E. Willing, and J. Stoye, J. Comput. Biol. 18, 1167–1184 (2011).MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. H. da Silva, R. Machado, S. Dantas, and M. D. V. Braga, Algorithms Molec. Biol. 8, 21.1–21.15 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Shao, Y. Lin, and B. Moret, in Research in Computational Molecular Biology: 18th Annual International Conference RECOMB 2014, Pittsburgh, PA, USA, 2014 (Springer, New York, 2014), pp. 280–292.CrossRefGoogle Scholar
  6. 6.
    F. V. Martinez, P. Feijão, M. D. V. Braga, and J. Stoye, Algorithms Molec. Biol. 10, 21.1–21.15 (2015).CrossRefGoogle Scholar
  7. 7.
    P. E. C. Compeau, Algorithms Molec. Biol. 8, 6.1–6.9 (2013).CrossRefGoogle Scholar
  8. 8.
    P. E. C. Compeau, in Proceedings of 14th International Workshop “Algorithms in Bioinformatics,” Wroclaw, Poland, 2014 (Wroclaw, 2014), Vol. 8701, pp. 38–51.Google Scholar
  9. 9.
    M. A. Alekseyev and P. A. Pevzner, Theor. Comput. Sci. 395 (2–3), 193–202 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations