Advertisement

Doklady Mathematics

, Volume 96, Issue 2, pp 430–432 | Cite as

Uniformization of simply connected ramified coverings of the sphere by rational functions

Mathematics
  • 16 Downloads

Abstract

We deduce a system of ODEs describing the behavior of critical points and poles of a smooth one-parametric family of rational functions uniformizing a given family of ramified coverings of the Riemann sphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hurwitz, Math. Ann. 39, 1–61 (1891).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Hurwitz, Math. Ann. 55, 53–66 (1902).CrossRefGoogle Scholar
  3. 3.
    H. Weyl, Comment. Math. Helv. 3, 103–113 (1931).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. D. Mednykh, Dokl. Akad. Nauk SSSR 239 (2), 269–271 (1978).MathSciNetGoogle Scholar
  5. 5.
    A. D. Mednykh, Dokl. Akad. Nauk SSSR 261 (3), 529–532 (1984).Google Scholar
  6. 6.
    A. D. Mednykh, Sib. Mat. Zh. 25 (4), 120–142 (1984).Google Scholar
  7. 7.
    S. R. Nasyrov, Geometric Problems in the Theory of Ramified Coverings of Riemann Surfaces (Magarif, Kazan, 2008) [in Russian].Google Scholar
  8. 8.
    S. K. Lando, Russ. Math. Surv. 57 (3), 463–533 (2002).CrossRefGoogle Scholar
  9. 9.
    S. K. Lando and A. K. Zvonkin, “Graphs on surfaces and their applications,” Encyclopedia of Mathematical Sciences (Springer, Berlin, 2004), Vol. 141.Google Scholar
  10. 10.
    S. R. Nasyrov, Math. Notes 91 (4), 558–567 (2012).MathSciNetCrossRefGoogle Scholar
  11. 11.
    I. A. Aleksandrov, Parametric Continuation in the Theory of Univalent Functions (Nauka, Moscow, 1976) [in Russian].MATHGoogle Scholar
  12. 12.
    V. Ya. Gutlyanskii and V. I. Ryazanov, Geometric and Topological Theory of Functions and Mappings (Naukova Dumka, Kiev, 2011), [in Russian].MATHGoogle Scholar
  13. 13.
    L. de Branges, Acta Math. 154 (1), 137–152 (1985).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations