Doklady Mathematics

, Volume 95, Issue 1, pp 50–54 | Cite as

On the reduction property for GLP-algebras

Mathematics

Abstract

We consider a natural generalization to the class of all GLP-algebras of the so-called reduction property for the polymodal provability algebras in arithmetic. An analogue of this property is established for the free GLP-algebras and for some topological GLP-algebras (GLP-spaces).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bagaria, M. Magidor, and H. Sakai, Israel J. Math. 208, 1–11 (2015).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. D. Beklemishev, Ann. Pure Appl. Logic 128, 103–123 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. D. Beklemishev, Russ. Math. Surv. 60 (2), 197–268 (2005).CrossRefGoogle Scholar
  4. 4.
    L. D. Beklemishev, Ann. Pure Appl. Logic 161, 756–774 (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. D. Beklemishev, Proc. Steklov Inst. Math. 274 (1), 25–33 (2011).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. D. Beklemishev, G. Bezhanishvili, and T. Icard, “On topological models of GLP,” in Ways of Proof Theory (Ontos Verlag, Frankfurt, 2010), pp. 133–152. Logic Group Preprint Ser. 278, Univ. Utrecht, 2009. http://preprints.phil.uu.nl/lgps/MATHGoogle Scholar
  7. 7.
    L. D. Beklemishev and D. Gabelaia, Ann. Pure Appl. Logic 164 (1–2), 1201–1223 (2013).MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. D. Beklemishev and D. Gabelaia, “Topological interpretations of provability logic,” in Leo Esakia on Duality in Modal and Intuitionistic Logics, Outstanding Contributions to Logic, Vol. 4 (Springer, 2014), pp. 257–290.Google Scholar
  9. 9.
    G. K. Japaridze, The Modal Logical Means of Investigation of Provability, Thesis in Philosophy (Moscow, 1986).Google Scholar
  10. 10.
    J. J. Joosten, “Turing jumps through provability,” in Evolving Computability—11th Conference on Computability in Europe, CiE 2015, Proceedings, Lect. Notes Comput. Sci. 9136, 216–225 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations