Doklady Mathematics

, Volume 92, Issue 2, pp 525–527 | Cite as

Index sets of autostable relative to strong constructivizations constructive models for familiar classes

  • S. S. Goncharov
  • N. A. Bazhenov
  • M. I. Marchuk
Mathematics

Abstract

This paper calculates, in a precise way, the complexity of the index sets for computable structures that are autostable relative to strong constructivizations and belong to one of the following classes: linear orderings, Boolean algebras, distributive lattices, partial orderings, rings, and commutative semigroups. We also calculate the complexity of the index set for computable structures that have computable dimension n, where n is a fixed natural number greater than 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. L. Ershov and S. S. Goncharov, Constructive Models: Siberian School of Algebra and Logic (Consultants Bureau, New York, 2000).CrossRefGoogle Scholar
  2. 2.
    C. J. Ash and J. F. Khight, Computable Structures and the Hyperarithmetical Hierarchy (Elsevier Science, Amsterdam, 2000).MATHGoogle Scholar
  3. 3.
    S. S. Goncharov and J. F. Khight, Algebra Logic 41 (6), 351–373 (2002).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. S. Goncharov, in Mathematical Problems from Applied Logic. II: Logics for the 21st Century, Int. Math. Ser. (Springer, New York, 2007), Vol. 5, pp. 99–216.MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. S. Goncharov, J. Math. Sci. 205 (3), 355–367 (2015).CrossRefGoogle Scholar
  6. 6.
    E. B. Fokina, Sib. Math. J. 48 (5), 939–948 (2007).MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. N. Pavlovskii, Sib. Math. J. 49 (3), 512–523 (2008).MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. A. Bazhenov, J. Math. Sci. 203 (4), 444–454 (2014).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. S. Goncharov and M. I. Marchuk, J. Math. Sci. 205 (3), 368–388 (2015).CrossRefGoogle Scholar
  10. 10.
    S. S. Goncharov, Countable Boolean Algebras and Decidability: Siberian School of Algebra and Logic (Consultants Bureau, New York, 1997).MATHGoogle Scholar
  11. 11.
    N. A. Bazhenov, Algebra Logic 52 (3), 179–187 (2013).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. J. Ash and J. F. Knight, Ann. Pure Appl. Logic 46 (3), 211–234 (1990).MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. T. Nurtazin, Algebra Logika 13 (3), 311–323 (1974).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. G. Downey, A. M. Kach, S. Lempp, et al., Adv. Math. 268, 423–466 (2015).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. S. Goncharov, Algebra Logika 19 (6), 621–639 (1980).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. S. Goncharov
    • 1
    • 2
  • N. A. Bazhenov
    • 1
    • 2
  • M. I. Marchuk
    • 1
  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations