Doklady Mathematics

, Volume 91, Issue 3, pp 394–396 | Cite as

Variational necessary optimality conditions with feedback descent controls for optimal control problems

  • V. A. DykhtaEmail author
Control Theory


Maximum Principle Optimal Control Problem Admissible Pair Comparison Problem Smooth Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz Moscow, 1961; Gordon and Breach, New York, 1986).zbMATHGoogle Scholar
  2. 2.
    F. H. Clarke, Optimization and Nonsmooth Analysis (Wiley New York, 1983; Nauka, Moscow, 1988).Google Scholar
  3. 3.
    N. N. Krasovskii, Control of a Dynamic System (Nauka Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    M. M. Khrustalev, Dokl. Akad. Nauk SSSR 242 (5), 1023–1026 (1978).MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective (Birkhäuser Boston, 1995; Inst. Komp’yut. Issled., Moscow, 2003).zbMATHGoogle Scholar
  6. 6.
    F. H. Clarke, Yu. S. Ledyaev, and A. I. Subbotin, Proc. Steklov Inst. Math. 224, 149–168 (1999).MathSciNetGoogle Scholar
  7. 7.
    F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, et al., Nonsmooth Analysis and Control Theory (Springer-Verlag New York, 1998).Google Scholar
  8. 8.
    V. A. Dykhta, “Weakly monotone and generating L-functions in optimal control,” in Analytical Mechanics, Stability, and Control: Proceedings of the 10th International Chetaev Conference, Kazan, June 12–16, 2012, Vol. 3, Section 3: Control (Kazan. Gos. Tekh. Univ. Kazan, 2012), Part 1, pp. 408–420.Google Scholar
  9. 9.
    V. A. Dykhta, Autom. Remote Control 75 (5), 829–844 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. A. Dykhta, Izv. Irkutsk. Gos. Univ. Ser. Mat. 8, 86–103 (2014).Google Scholar
  11. 11.
    B. Kaskosz, J. Optim. Theory Appl. 101 (1), 73–108 (1999).MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. N. Kruzhkov, Math. USSR Sb. 27 (3), 406–446 (1975).CrossRefGoogle Scholar
  13. 13.
    P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control: Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser Boston, 2004).Google Scholar
  14. 14.
    A. D. Aleksandrov, Dokl. Akad. Nauk SSSR 72 (4), 613–616 (1950).zbMATHGoogle Scholar
  15. 15.
    F. H. Clarke, Functional Analysis, Calculus of Variations, and Optimal Control (Springer London, 2013).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control Theory, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations