Advertisement

Doklady Mathematics

, Volume 91, Issue 1, pp 114–116 | Cite as

Wigner quantization of Hamilton-Dirac systems

  • T. S. RatiuEmail author
  • O. G. Smolyanov
Mathematical Physics

Keywords

Hamiltonian System Poisson Bracket DOKLADY Mathematic Wigner Function Pseudodifferential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1978).zbMATHGoogle Scholar
  2. 2.
    S. Albeverio, O. G. Smolyanov, and A. Yu. Khrennikov, Dokl. Math. 64, 321–325 (2001).Google Scholar
  3. 3.
    P. R. Chernoff and J. E. Marsden, Some Basic Properties of Infinite Dimensional Hamiltonian Systems (Springer-Verlag, Berlin, 1974).Google Scholar
  4. 4.
    P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva Univ., New York, 1964; Mir, Moscow, 1968).Google Scholar
  5. 5.
    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, New York, 2000).zbMATHGoogle Scholar
  6. 6.
    J. Gough, T. S. Ratiu, and O. G. Smolyanov, Dokl. Math. 89, 68–71 (2014).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 84, 571–575 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    V. V. Kozlov and O. G. Smolyanov, Theory Prob. Its Appl. 51(1), 168–181 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, Berlin, 1994).CrossRefzbMATHGoogle Scholar
  10. 10.
    J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction (Birkhäuser, Boston, Mass., 2004).CrossRefzbMATHGoogle Scholar
  11. 11.
    T. S. Ratiu and O. G. Smolyanov, Dokl. Math. 87, 289–292 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. S. Ratiu and O. G. Smolyanov, Dokl. Math. 91, (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Mathematics Section and Bernoulli CenterÉcole Polytechnique Féedérale de Lausanne, Station 8LausanneSwitzerland
  2. 2.Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations