Doklady Mathematics

, Volume 90, Issue 3, pp 660–662 | Cite as

Pullback attractors for a model of motion of weak aqueous polymer solutions



Weak Solution DOKLADY Mathematic Global Attractor Stokes Operator Trajectory Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. B. Amfilokhiev, Ya. I. Voitkunskii, N. P. Mazaeva, and Ya. S. Khodornovskii, Tr. Leningr. Korablestroit. Inst. 96, 3–9 (1975).Google Scholar
  2. 2.
    V. G. Zvyagin, Sovrem. Mat. Fundam. Napravlen. 46, 93–119 (2012).MathSciNetGoogle Scholar
  3. 3.
    V. G. Zvyagin and M. V. Turbin, Sovrem. Mat. Fundam. Napravlen. 31, 3–144 (2009).Google Scholar
  4. 4.
    V. A. Pavlovskii, Dokl. Akad. Nauk SSSR 200(4), 809–812 (1971).MathSciNetGoogle Scholar
  5. 5.
    A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications (Nauchnaya Kniga, Novosibirsk, 1999) [in Russian].MATHGoogle Scholar
  6. 6.
    A. N. Carvalho, J. A. Langa, and J. C. Robinson, Attractors for Infinite-Dimensional Nonautonomous Dynamical Systems (Springer, Berlin, 2012).Google Scholar
  7. 7.
    M. I. Vishik and V. V. Chepyzhov, Attractors for Equations of Mathematical Physics (Am. Math. Soc. Colloquium, Providence, R.I., 2002).MATHGoogle Scholar
  8. 8.
    M. I. Vishik and V. V. Chepyzhov, J. Math. Pures Appl. 76, 913–964 (1997).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    D. A. Vorotnikov, J. Differ. Equations 251, 2209–2225 (2011).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    V. G. Zvyagin and S. K. Kondratyev, Fixed Point Theory Appl. 13, 359–395 (2013).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    V. G. Zvyagin and D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics (Walter de Gruyter, Berlin, 2008).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations