Doklady Mathematics

, Volume 90, Issue 2, pp 631–634 | Cite as

Nonintegrability and obstructions to the hamiltonianization of a nonholonomic Chaplygin top

Mathematical Physics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, Regul. Chaotic Dyn. 18(3), 277–328 (2013).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, Regul. Chaotic Dyn. 17(6), 571–579 (2012).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. V. Borisov and I. S. Mamaev, Regul. Chaotic Dyn 13(5), 443–490 (2008).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    I. A. Bizyaev and A. V. Tsiganov, J. Phys. A: Math. Theor. 46(8), 1–11 (2013).CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. A. Chaplygin, Regul. Chaotic Dyn 7(2), 131–148 (2002).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    V. V. Kozlov, Usp. Mekh. 8(3), 85–107 (1985).Google Scholar
  7. 7.
    V. V. Kozlov, Proc. Steklov Inst. Math. 256, 188–205 (2007).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    V. V. Kozlov, J. Appl. Math. Mech. 51(4), 420–426 (1987).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. V. Borisov, I. S. Mamaev, and A. V. Tsyganov, Math. Notes 95(3), 308–315 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Shen, D. A. Schneider, and A. M. Bloch, in Proceedings of the 42th IEEE Conference on Decision and Control, Maui, 2013 (Maui, 2013), Vol. 53, 4369–4374.Google Scholar
  11. 11.
    J. Shen, D. A. Schneider, and A. M. Bloch, Intern. J. Robust Nonlinear Control 18(9), 905–945 (2008).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    P. Lynch and M. D. Bustamante, J. Phys. A: Math. Theor. 42, 425203 (2009).CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. V. Borisov and I. S. Mamaev, Regul. Chaotic Dyn. 7(2), 177–200 (2002).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    K. M. Ehlers and J. Koiler, in Proceedings of IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence, Moscow, Russia, 2006 (Springer, Dordrecth, 2006).Google Scholar
  15. 15.
    A. O. Kazakov, Regul. Chaotic Dyn. 18(5), 508–520 (2013).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia

Personalised recommendations