Doklady Mathematics

, Volume 90, Issue 2, pp 622–625 | Cite as

Fluctuations of gibbs ensembles

  • V. V. Kozlov
Mathematical Physics


Steklov Institute Weak Convergence DOKLADY Mathematic Liouville Equation Integrable Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics (Am. Math. Soc., Providence, R.I., 1963; Mir, Moscow, 1965).zbMATHGoogle Scholar
  2. 2.
    V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincaré (Inst. Komp’yuternykh Issled., Izhevsk, 2002) [in Russian].zbMATHGoogle Scholar
  3. 3.
    V. V. Kozlov and D. V. Treshchev, Teor. Mat. Fiz. 136(3), 496–506 (2003).CrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Kozloz, Regul. Chaotic Dyn. 6(3), 235–251 (2001).CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Poincaré, J. Phys. Théor. Appl., Ser. 4 5, 369–403 (1906).zbMATHGoogle Scholar
  6. 6.
    V. V. Kozlov, Regul. Chaotic Dyn. 14(4/5), 535–540 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    M. Kac, Probability and Related Topics in Physical Sciences (Interscience, London, 1959).zbMATHGoogle Scholar
  8. 8.
    D. Szász, in Hard Ball Systems and the Lorentz Gas (Springer-Verlag, Berlin, 2000), pp. 421–446.CrossRefzbMATHGoogle Scholar
  9. 9.
    Ya. I. Frenkel’, Statistical Physics (Akad. Nauk SSSR, Moscow, 1948) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations