Advertisement

Doklady Mathematics

, Volume 90, Issue 2, pp 637–641 | Cite as

Structure of the spectrum of a net of quantum waveguides and bounded solutions of a model problem at the threshold

  • S. A. NazarovEmail author
Mathematical Physics

Keywords

DOKLADY Mathematic Homogeneous Problem Quantum Graph Trap Mode Boundary Layer Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kuchment, Waves Random Media 12(12), R1–R24 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    P. Kuchment and O. Post, Commun. Math. Phys. 275, 805–826 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. Grieser, Proc. London Math. Soc. 97, 718–752 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S. A. Nazarov, St. Petersburg Math. J. 23, 1023–1045 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. A. Nazarov, Acoust. Phys. 56, 1004–1015 (2010).CrossRefGoogle Scholar
  6. 6.
    S. A. Nazarov and A. V. Shanin, Comput. Math. Math. Phys. 51, 96–110 (2011).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, New York, 1994).CrossRefzbMATHGoogle Scholar
  8. 8.
    S. A. Nazarov, Theor. Math. Phys. 167, 606–627 (2011).CrossRefzbMATHGoogle Scholar
  9. 9.
    S. A. Nazarov, Math. USSR-Sb. 69, 307–340 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    D. S. Jones, Proc. Cambridge Phil. Soc. 49, 668–684 (1953).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversityStaryi Peterhof, St. PetersburgRussia
  2. 2.Institute of Mechanical Engineering ProblemsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations