Doklady Mathematics

, Volume 89, Issue 3, pp 305–307 | Cite as

Moments of trigonometric polynomials and their applications in the theory of the Riemann zeta-function

  • M. A. Korolev


Steklov Institute DOKLADY Mathematic Trigonometric Polynomial Residual Term Riemann Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Selberg, Arch. Math. Naturvid. 48(5), 89–155 (1946).zbMATHMathSciNetGoogle Scholar
  2. 2.
    A. A. Karatsuba and M. A. Korolev, Russ. Math. Surveys 61(3), 389–482 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. N. Boyarinov, Dokl. Math. 83, 53–55 (2011).CrossRefzbMATHGoogle Scholar
  4. 4.
    R. N. Boyarinov, Dokl. Math. 83, 290–292 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Selberg, in Proceedings of the Tenth Scandinavian Mathematical Congress, Copenhagen, Denmark, July 1946 (Gjellerups, Copenhagen, 1947), pp. 187–200.Google Scholar
  6. 6.
    M. A. Korolev, Izv.: Math. 74(4), 743–780 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R. N. Boyarinov, V. N. Chubarikov, and I. S. Ngongo, Chebyshev. Sb. 4(3), 173–183 (2013).MathSciNetGoogle Scholar
  8. 8.
    M. Radziwi, arXiv:1108.5092 [math.NT].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations