Advertisement

Doklady Mathematics

, Volume 88, Issue 2, pp 516–517 | Cite as

Combinatorial and geometric properties of the Max-Cut and Min-Cut problems

  • V. A. Bondarenko
  • A. V. Nikolaev
Mathematics

Keywords

Travel Salesman Problem Objective Vector Clique Number Linear Objective Function Cone Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).zbMATHGoogle Scholar
  2. 2.
    L. R. Ford, Jr., and D. R. Fulkerson, Canad. J. Math 8, 399–404 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Stoer and F. Wagner, in Algorithms—ESA’94 (Springer-Verlag, Berlin, 1994), pp. 141–147.Google Scholar
  4. 4.
    M. M. Deza and M. Laurent, Geometry of Cuts and Metrics (Algorithms and Combinatorics), 2nd ed. (Springer-Verlag, Berlin, 2009).Google Scholar
  5. 5.
    V. A. Bondarenko and A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization (LKI, Moscow, 2008) [in Russian].Google Scholar
  6. 6.
    V. A. Bondarenko, Avtom. Telemekh., No. 9, 45–50 (1983).Google Scholar
  7. 7.
    M. Ju. Moshkov, in Transactions on Rough Sets III, Ed. by J.F. Peters and A. Skowron (Springer-Verlag, Berlin, 2005), pp. 244–459.Google Scholar
  8. 8.
    F. Barahona and A. R. Mahjoub, Math. Programming 36, 157–173 (1986).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations