Doklady Mathematics

, Volume 88, Issue 2, pp 590–592 | Cite as

Asymptotically homogeneous solutions of differential equations whose symbols are polynomials quasi-homogeneous with respect to one-parameter groups with generators containing a nilpotent component

Mathematical Physics
  • 28 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Seneta, Regularly Varying Functions (Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1985).CrossRefMATHGoogle Scholar
  2. 2.
    O. von Grudzinski, Quazihomogeneous Distributions (North-Holland, Amsterdam, 1991).Google Scholar
  3. 3.
    Yu. N. Drozhzhinov and B. I. Zavialov, p-Adic Numbers Ultrametric Anal. Appl. 4(1), 20–31 (2012).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yu. N. Drozhzhinov and B. I. Zav’yalov, Ufimskii Mat. Zh. 1(4), 33–66 (2009).MATHGoogle Scholar
  5. 5.
    Yu. N. Drozhzhinov and B. I. Zav’yalov, Mat. Sb. 200(6), 23–66 (2009).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. M. Gel’fand and G. E. Shilov, Generalized Functions and Actions on Them (Fizmatlit, Moscow, 1959) [in Russian].Google Scholar
  7. 7.
    Yu. N. Drozhzhinov and B. I. Zav’yalov, Ufimskii Mat. Zh. 5(1), 17–35 (2013).CrossRefGoogle Scholar
  8. 8.
    Yu. N. Drozhzhinov and B. I. Zav’yalov, Izv. Ross. Akad. Nauk, Ser. Mat. 76(3), 39–91 (2012).MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Hörmander,, Ark. Math. 3(6), 555–568 (1958).CrossRefMATHGoogle Scholar
  10. 10.
    Yu. N. Drozhzhinov and B. I. Zav’yalov, Dokl. Math., 79, 356–359 (2009).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations