Advertisement

Doklady Mathematics

, Volume 88, Issue 1, pp 388–390 | Cite as

A square bias transformation of probability distributions: Some properties and applications

  • I. G. ShevtsovaEmail author
Mathematics

Keywords

Characteristic Function DOKLADY Mathematic Unique Fixed Point Integral Estimate Nonnegative Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. S. Tyurin, Dokl. Math. 80, 840–843 (2010).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Goldstein, Ann. Probab. 38, 1672–1689 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    L. Goldstein and Y. Rinott, J. Appl. Probab. 33, 1–17 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    L. Goldstein and G. Reinert, Ann. Appl. Probab. 7, 935–952 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    L. Goldstein and G. Reinert, J. Theor. Probab. 18(1), 237–260 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    W. Hoeffding, Ann. Math. Stat. 26(2), 268–275 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    V. Korolev and I. Shevtsova, Scand. Actuar. J., No. 2, 81–105 (2012).Google Scholar
  8. 8.
    E. Lukacs, Characteristic Functions (Griffin, London, 1960).zbMATHGoogle Scholar
  9. 9.
    C. Stein, Ann. Stat. 9, 1135–1151 (1981).zbMATHCrossRefGoogle Scholar
  10. 10.
    I. Tyurin, arXiv:0912.0726 [math.PR], December 3, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia
  2. 2.Institute for Informatics ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations