Advertisement

Doklady Mathematics

, Volume 87, Issue 1, pp 20–22 | Cite as

Uniformization of nonlocal elliptic operators and KK-theory

  • A. Yu. Savin
  • B. Yu. Sternin
Mathematics

Keywords

DOKLADY Mathematic Pseudodifferential Operator Cotangent Bundle Hilbert Module Nonpositive Sectional Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Savin and B. Yu. Sternin, Dokl. Math. 81, 258–261 (2010).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    B. Yu. Sternin, Cent. Europ. J. Math. 9(4), 814–832 (2011).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. Savin and B. Sternin, J. Noncommutative Geom. 7 (2013), ArXiv:1106.4195.Google Scholar
  4. 4.
    A. Yu. Savin, B. Yu. Sternin, and E. Schrohe, Dokl. Math. 84, 846–849 (2011).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    G. Kasparov, Inv. Math. 91(1), 147–201 (1988).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. K. Pedersen, C*-Algebras and Their Automorphism Groups (Academic, London, 1979).MATHGoogle Scholar
  7. 7.
    A. B. Antonevich and A. V. Lebedev, Proc. St. Petersburg Math. Soc. 6, 25–116 (2000) (AMS Translations, Ser. 2).MathSciNetGoogle Scholar
  8. 8.
    V. M. Manuilov and E. V. Troitskii, Hilbert C*-Modules (Faktorial, Moscow, 2001; AMS, Providence, RI, 2005).Google Scholar
  9. 9.
    A. S. Mishchenko, Izv. Akad. Nauk, Ser. Mat. 38(1), 85–111 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Leibniz University of HannoverHannoverGermany

Personalised recommendations