Doklady Mathematics

, Volume 87, Issue 1, pp 20–22 | Cite as

Uniformization of nonlocal elliptic operators and KK-theory

  • A. Yu. SavinEmail author
  • B. Yu. Sternin


DOKLADY Mathematic Pseudodifferential Operator Cotangent Bundle Hilbert Module Nonpositive Sectional Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yu. Savin and B. Yu. Sternin, Dokl. Math. 81, 258–261 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    B. Yu. Sternin, Cent. Europ. J. Math. 9(4), 814–832 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Savin and B. Sternin, J. Noncommutative Geom. 7 (2013), ArXiv:1106.4195.Google Scholar
  4. 4.
    A. Yu. Savin, B. Yu. Sternin, and E. Schrohe, Dokl. Math. 84, 846–849 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Kasparov, Inv. Math. 91(1), 147–201 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    G. K. Pedersen, C*-Algebras and Their Automorphism Groups (Academic, London, 1979).zbMATHGoogle Scholar
  7. 7.
    A. B. Antonevich and A. V. Lebedev, Proc. St. Petersburg Math. Soc. 6, 25–116 (2000) (AMS Translations, Ser. 2).MathSciNetGoogle Scholar
  8. 8.
    V. M. Manuilov and E. V. Troitskii, Hilbert C*-Modules (Faktorial, Moscow, 2001; AMS, Providence, RI, 2005).Google Scholar
  9. 9.
    A. S. Mishchenko, Izv. Akad. Nauk, Ser. Mat. 38(1), 85–111 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Leibniz University of HannoverHannoverGermany

Personalised recommendations