Advertisement

Doklady Mathematics

, Volume 86, Issue 1, pp 562–565 | Cite as

Operators on cones of monotone functions

  • A. Gogatishvili
  • V. D. Stepanov
Mathematics

Keywords

Czech Republic Weight Function Integral Operator Monotone Function DOKLADY Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Burenkov and M. L. Gol’dman, Proc. Steklov Inst. Math. 210, 47–65 (1995).MathSciNetGoogle Scholar
  2. 2.
    M. Carro, A. Gogatishvili, J. Martin, and L. Pick, J. Operat. Theory 59, 309–332 (2008).MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Carro, L. Pick, J. Soria, and V. D. Stepanov, Math. Inequal. Appl. 4, 397–428 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Gogatishvili, M. Johansson, C. A. Okpoti, and L. E. Persson, Bull. Austral. Math. Soc. 76, 69–92 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Gogatishvili, B. Opic, and L. Pick, Collect. Math. 57, 227–255 (2006).MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Gogatishvili and L. Pick, J. Comput. Appl. Math. 208, 270–279 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Gogatishvili and L. Pick, Math. Inequal. Appl. 3, 539–558 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. L. Gol’dman, Proc. Steklov Inst. Math. 232, 109–137 (2001).Google Scholar
  9. 9.
    M. Johansson, V. D. Stepanov, and E. P. Ushakova, Math. Inequal. Appl. 11, 393–413 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R. Oinarov, Proc. Steklov Inst. Math. 204, 205–214 (1994).MathSciNetGoogle Scholar
  11. 11.
    E. Sawyer, Stud. Math. 96, 145–158 (1990).MathSciNetzbMATHGoogle Scholar
  12. 12.
    G. Sinnamon, in Function Spaces and Nonlinear Analysis (Math. Inst. Acad. Sci. Czech Republic, Prague, 2005), pp. 292–310.Google Scholar
  13. 13.
    V. D. Stepanov, Trans. Am. Math. Soc. 338, 173–186 (1993).zbMATHGoogle Scholar
  14. 14.
    V. D. Stepanov, J. London Math. Soc. 48, 465–487 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    V. D. Stepanov, in Spectral Theory, Function Spaces, and Inequalities: New Technique and Recent Trends, Operator Theory: Advances and Applications (Birkhäuser, Basel, 2012), pp. 233–242.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPrague 1Czech Republic
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations