Advertisement

Doklady Mathematics

, Volume 85, Issue 2, pp 283–285 | Cite as

On affine reducibility of combinatorial polytopes

  • A. N. Maksimenko
Mathematics

Keywords

Characteristic Vector Knapsack Problem DOKLADY Mathematic Double Cover Simple Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Hausmann, Adjacency on Polytopes in Combinatorial Optimization, Mathematical Systems in Economics (Meisenheim am Glan, Hain, 1980), vol. 49.zbMATHGoogle Scholar
  2. 2.
    V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, Graphs, Optimization (Nauka, Moscow, 1981) [in Russian].zbMATHGoogle Scholar
  3. 3.
    C. H. Papadimitriou, Math. Programming 14(1), 312–324 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    T. Matsui, Lecture Notes Operat. Res. 1, 249–258 (1995).Google Scholar
  5. 5.
    V. A. Bondarenko and S. V. Yurov, Fundamenta Informaticae 25(1), 28–35 (1996).MathSciNetGoogle Scholar
  6. 6.
    A. Y. Alfakih and K. G. Murty, Discrete Appl. Math. 87(1), 269–274 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    S. Fiorini, Europ. J. Combinatorics 24(2), 149–159 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    V. A. Bondarenko and A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization (LKI, Moscow, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations