Doklady Mathematics

, Volume 85, Issue 1, pp 46–47 | Cite as

A class of hypergraphs and vertices of cut polytope relaxations



  1. 1.
    V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka, Moscow, 1990) [in Russian].MATHGoogle Scholar
  2. 2.
    M. Garey and D. Johnson, Computers and Intractability (Freeman, San Francisco, 1979; Mir, Moscow, 1982).MATHGoogle Scholar
  3. 3.
    T. J. Schaefer, in Proceedings of X Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 1978), pp. 216–226.CrossRefGoogle Scholar
  4. 4.
    V. A. Bondarenko, in Modeling and Analysis of Computational Systems (Yaroslav. Gos. Univ., Yaroslavl, 1987), pp. 133–134 [in Russian].Google Scholar
  5. 5.
    M. M. Deza and M. Laurent, Geometry of Cuts and Metrics (Springer-Verlag, Berlin, 1997; MTsNMO, Moscow, 2001).MATHGoogle Scholar
  6. 6.
    V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, Graphs, Optimization (Nauka, Moscow, 1981) [in Russian].MATHGoogle Scholar
  7. 7.
    M. V. Padberg, Math. Program. 45, 139–172 (1989).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. A. Bondarenko and A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization (LKI, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    V. A. Bondarenko and B. V. Uryvaev, Avtom. Telemekh., No. 6, 18–23 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations