Advertisement

Doklady Mathematics

, Volume 84, Issue 3, pp 846–849 | Cite as

Index problem for elliptic operators associated with a diffeomorphism of a manifold and uniformization

  • A. Yu. Savin
  • B. Yu. Sternin
  • E. Schrohe
Mathematics

Keywords

Differential Operator Elliptic Operator DOKLADY Mathematic Shift Operator Topological Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Antonevich and A. Lebedev, Functional Differential Equations, I: C*-Theory (Longman, Harlow, 1994).MATHGoogle Scholar
  2. 2.
    V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry (Birkhäuser, Basel, 2008).MATHGoogle Scholar
  3. 3.
    P. Baum and A. Connes, A Fête of Topology (Academic, Boston, Mass., 1988).Google Scholar
  4. 4.
    G. Luke, J. Differ. Equations 12, 566–589 (1972).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    M. F. Atiyah and I. M. Singer, Ann. Math. 87, 484–530 (1968).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    V. E. Nazaikinskii, A. Yu. Savin, B.-W. Schulze, and B. Yu. Sternin, Elliptic Theory on Singular Manifolds (CRC Press, Boca Raton, Fla., 2005).CrossRefGoogle Scholar
  7. 7.
    G. Rozenblum, Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations (Birkhäuser, Basel, 2003), pp. 419–437.CrossRefGoogle Scholar
  8. 8.
    L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1985), vol. 3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Peoples Friendship University of RussiaMoscowRussia
  2. 2.Leibniz University of HannoverHannoverGermany

Personalised recommendations