Doklady Mathematics

, Volume 84, Issue 3, pp 846–849 | Cite as

Index problem for elliptic operators associated with a diffeomorphism of a manifold and uniformization

  • A. Yu. SavinEmail author
  • B. Yu. Sternin
  • E. Schrohe


Differential Operator Elliptic Operator DOKLADY Mathematic Shift Operator Topological Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Antonevich and A. Lebedev, Functional Differential Equations, I: C*-Theory (Longman, Harlow, 1994).zbMATHGoogle Scholar
  2. 2.
    V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry (Birkhäuser, Basel, 2008).zbMATHGoogle Scholar
  3. 3.
    P. Baum and A. Connes, A Fête of Topology (Academic, Boston, Mass., 1988).Google Scholar
  4. 4.
    G. Luke, J. Differ. Equations 12, 566–589 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. F. Atiyah and I. M. Singer, Ann. Math. 87, 484–530 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    V. E. Nazaikinskii, A. Yu. Savin, B.-W. Schulze, and B. Yu. Sternin, Elliptic Theory on Singular Manifolds (CRC Press, Boca Raton, Fla., 2005).CrossRefGoogle Scholar
  7. 7.
    G. Rozenblum, Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations (Birkhäuser, Basel, 2003), pp. 419–437.CrossRefGoogle Scholar
  8. 8.
    L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1985), vol. 3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Peoples Friendship University of RussiaMoscowRussia
  2. 2.Leibniz University of HannoverHannoverGermany

Personalised recommendations