Advertisement

Doklady Mathematics

, Volume 84, Issue 3, pp 826–829 | Cite as

Harmonic analysis and the Riemann-Roch theorem

  • D. V. OsipovEmail author
  • A. N. Parshin
Mathematics

Keywords

DOKLADY Mathematic Algebraic Surface Poisson Summation Formula Smooth Projective Curve ROCH Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Osipov, Mat. Sb. 196(10), 111–136 (2005); Sb. Math. 196 (10), 1503-1527 (2005).MathSciNetGoogle Scholar
  2. 2.
    D. Osipov, Int. J. Math. 18(3), 269–279 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. V. Osipov and A. N. Parshin, Izvestiya RAN, Ser. Mat. 72(5), pp. 77–140 2008; Izvestiya: Mathematics 72 (5), 915–976 (2008).MathSciNetGoogle Scholar
  4. 4.
    D. V. Osipov and A. N. Parshin, Izvestiya RAN, Ser. Mat. 75(4), 91–164 (2011); Izvestiya: Mathematics 75 (4), 749–814 (2011).Google Scholar
  5. 5.
    A. N. Parshin, Journal für die reine and angewandte Mathematik, Band 341, 174–192 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    A. N. Parshin, “Higher-Dimensional Local Fields and L-Functions,” in Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3 (Geom. Topol. Publ., Coventry, 2000), pp. 199-213.Google Scholar
  7. 7.
    J.-P. Serre, Groupes algebriques et corps de classes, Publications de l’institut de math-ematique de l’universite de Nancago (Hermann, Paris, 1959), Vol. VII.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Steklov Mathematical Institute RASMoscowRussia

Personalised recommendations