Advertisement

Doklady Mathematics

, Volume 84, Issue 2, pp 672–674 | Cite as

Behavior of sequences of norms of primitives of functions depending on their spectrum

  • H. H. BangEmail author
  • V. N. Huy
Mathematics
  • 45 Downloads

Keywords

Generalize Function Differential Operator Technology Development Func Tion Compact Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Bang, Proc. Am. Math. Soc. 108, 73–76 (1990).zbMATHCrossRefGoogle Scholar
  2. 2.
    H. H. Bang and M. Morimoto, Tokyo J. Math. 14(1), 231–238 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    H. H. Bang, Bull. Polish Akad. Sci. 40, 197–206 (1993).MathSciNetGoogle Scholar
  4. 4.
    H. H. Bang, Trans. Am. Math. Soc. 347, 1067–1080 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H. H. Bang, Tokyo J. Math. 18(1), 123–131 (1990).MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. H. Bang, J. Math. Sci. Univ. Tokyo 2, 611–620 (1995).MathSciNetzbMATHGoogle Scholar
  7. 7.
    H. H. Bang, Dokl. Math. 53, 420–422 (1996).zbMATHGoogle Scholar
  8. 8.
    H. H. Bang, Izv. Math. 61, 399–434 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H. H. Bang, Dokl. Math. 55, 377–380 (1997).MathSciNetGoogle Scholar
  10. 10.
    N. B. Andersen, Pacific J. Math. 213(1), 1–13 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J. J. Betancor, J. D. Betancor, and J. M. R. Méndez, Publ. Math. Debrecen 60, 347–358 (2002).MathSciNetzbMATHGoogle Scholar
  12. 12.
    V. K. Tuan and A. Zayed, J. Math. Anal. Appl. 266, 200–226 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. K. Tuan, J. Fourier Anal. Appl. 7, 319–323 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    H. H. Bang and V. N. Huy, J. Approx. Theory 162, 1178–1186 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    V. S. Vladimirov, Methods of the Theory of Generalized Functions (Taylor & Francis, New York, 2002).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of MathematicsVietnamese Academy of Science and TechnologyCau Giay, HanoiVietnam
  2. 2.Department of Mathematics, College of ScienceHanoi National UniversityHanoiVietnam

Personalised recommendations