Advertisement

Doklady Mathematics

, 84:571 | Cite as

Wigner measures on infinite-dimensional spaces and the Bogolyubov equations for quantum systems

  • V. V. Kozlov
  • O. G. Smolyanov
Mathematical Physics

Keywords

DOKLADY Mathematic Wigner Function Generalize Density Gaussian Measure Liouville Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 81, 476–480 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    V. V. Kozlov and O. G. Smolyanov, in Quantum Bio-Informatics IV (Wold Sci., Singapore, 2011), pp. 321–337.Google Scholar
  3. 3.
    H. Poincaré, J. Phys. Théor. Appl. Sér. 5 4, 369–403 (1906).Google Scholar
  4. 4.
    N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Moscow, 1946) [in Russian].Google Scholar
  5. 5.
    E. Wigner, Phys. Rev. 40, 749 (1932).zbMATHCrossRefGoogle Scholar
  6. 6.
    J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99–124 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G. B. Folland, Harmonic Analysis in Phase Space (Princeton Univ. Press, Princeton, 1989).zbMATHGoogle Scholar
  8. 8.
    Y. S. Kim and M. E. Noz, Phase-Space Picture of Quantum Mechanics: Group Theoretical Approach (World Sci., Singapore, 1991).CrossRefGoogle Scholar
  9. 9.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975; Moscow, Mir, 1978).zbMATHGoogle Scholar
  10. 10.
    V. V. Kozlov, Gibbs and Poincaré Heat Equilibrium (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2002) [in Russian].Google Scholar
  11. 11.
    V. V. Kozlov, Reg. Chaotic Dyn., No. 1, 23–34 (2004).Google Scholar
  12. 12.
    V. V. Kozlov and O. G. Smolyanov, Teor. Veroyatn. Ee Primen. 51(1), 1–13 (2006).MathSciNetGoogle Scholar
  13. 13.
    N. Bourbaki, Eléments de Mathématique, Book 6: Intégration (Hermann, Paris, 1959, 1963; Nauka, Moscow, 1970; Springer-Verlag, Berlin, 2007).Google Scholar
  14. 14.
    O. G. Smolyanov and H. von Weizsaecker, C. R. Acad. Sci. Paris. Ser. 1 321, 103–108 (1995).zbMATHGoogle Scholar
  15. 15.
    O. G. Smolyanov and E. von Weizsaecker, Inf. Dimens. Anal. Quantum Probab. Relat. Top. 2(1), 51–78 (1999).zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations