Advertisement

Doklady Mathematics

, Volume 82, Issue 1, pp 540–542 | Cite as

Algorithm for constructing counterexamples to the Kalman problem

  • G. A. Leonov
  • V. O. Bragin
  • N. V. Kuznetsov
Mathematics

Keywords

Periodic Solution DOKLADY Mathematic Global Attractor Negative Real Part Nonlinear Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Lefschetz, Stability of Nonlinear Control Systems (Academic, New York, 1965; Mir, Moscow, 1967).zbMATHGoogle Scholar
  2. 2.
    R. E. Kalman, Trans. ASME 79, 553–566 (1957).MathSciNetGoogle Scholar
  3. 3.
    M. A. Aizerman and F. R. Gantmakher, Absolute Stability of Controlled Systems (Akad. Nauk SSSR, Moscow, 1963) [in Russian].Google Scholar
  4. 4.
    G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency Methods for Nonlinear Analysis: Theory and Applications (World Scientific, Singapore, 1996).zbMATHCrossRefGoogle Scholar
  5. 5.
    R. E. Fitts, IEEE Trans. Autom. Control 11, 553–556 (1966).CrossRefGoogle Scholar
  6. 6.
    N. E. Barabanov, Sib. Mat. Zh. 29(3), 3–11 (1988).MathSciNetGoogle Scholar
  7. 7.
    “In Moscow Mathematical Society,” Usp. Mat. Nauk 53(2), 169–172 (1998).Google Scholar
  8. 8.
    J. Bernat and J. Llibre, Dyn. Continuous, Discrete Impulsive Syst. 2, 337–379 (1996).zbMATHMathSciNetGoogle Scholar
  9. 9.
    G. A. Leonov, Dokl. Akad. Nauk SSSR 193, 756–759 (1970).MathSciNetGoogle Scholar
  10. 10.
    G. A. Leonov, I. M. Burkin, and A. I. Shepelyavyi, Frequency-Domain Methods in Oscillation Theory (Kluwer, Dordrecht, 1993).Google Scholar
  11. 11.
    G. A. Leonov, Avtom. Telemekh., No. 7, 37–49 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. A. Leonov
    • 1
  • V. O. Bragin
    • 1
  • N. V. Kuznetsov
    • 1
  1. 1.Faculty of Mathematics and MechanicsSt. Petersburg State UniversityPeterhof, St. PetersburgRussia

Personalised recommendations