Doklady Mathematics

, Volume 81, Issue 3, pp 476–480 | Cite as

Infinite-dimensional equation Liouville with respect to measures

Mathematical Physics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Poincaré, Selected Works (Nauka, Moscow, 1974), Vol. 3 [in Russian].MATHGoogle Scholar
  2. 2.
    N. N. Bogolyubov, Collection of Scientific Works (Nauka, Moscow, 2006), Vol. 5 [in Russian].Google Scholar
  3. 3.
    N. Bourbaki, Éléments de Mathématique, Book 6: Intégration, Chapter 6: Intégration vectorielle, Chapter 7: Mesure de Haar, Chapter 8: Convolution et Représentations (Hermann, Paris, 1959, 1963; Nauka, Moscow, 1970).Google Scholar
  4. 4.
    O. G. Smolyanov and S. V. Fomin, Usp. Mat. Nauk 31(4), 3–56 (1976).Google Scholar
  5. 5.
    O. G. Smolyanov and H. von Weizsaecker, Acad. Sci. Paris Ser. I 321, 103–108 (1995).MATHGoogle Scholar
  6. 6.
    V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincaré (Izhevsk, 2002) [in Russian].Google Scholar
  7. 7.
    V. V. Kozlov, Reg. Chaotic Dyn., No. 1, 23–34 (2004).Google Scholar
  8. 8.
    V. V. Kozlov and O. G. Smolyanov, Teor. Veroyatn. Ee Primen. 51(2), 1–18 (2006).Google Scholar
  9. 9.
    L. Accardi and O. G. Smolyanov, Dokl. Math. 79, 90–93 (2009) [Dokl. Akad. Nauk 424, 583–587 (2009)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations