Doklady Mathematics

, Volume 81, Issue 2, pp 216–218 | Cite as

Recognizability of the finite simple groups by spectrum and order

  • A. V. Vasil’ev
  • M. A. Grechkoseeva
  • V. D. Mazurov
Mathematics
  • 44 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed., Ed. by V. D. Mazurov and E. I. Khukhro (Russian Academy of Science Siberian Division, Sobolev Institute of Mathematics, Novosibirsk, 2006).MATHGoogle Scholar
  2. 2.
    W. Shi, in Group Theory. Proc. Singapore Group Theory Conf., 1987, Ser. B (Walter de Gruyter, N.Y., 1989), pp. 531–540.Google Scholar
  3. 3.
    J. Bi and W. Shi, Lect. Notes Math. 1456, 171 (1990).CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Bi and W. Shi, Sci. China, Ser. A 34(1), 14 (1991).MATHMathSciNetGoogle Scholar
  5. 5.
    J. Bi and W. Shi, Southeast Asian Bull. Math. 16(1), 81 (1992).MATHMathSciNetGoogle Scholar
  6. 6.
    W. Shi, Progress Nat. Sci. 4(3), 316 (1994).Google Scholar
  7. 7.
    H. Cao and W. Shi, Sci. China, Ser. A 45(6), 761 (2002).MATHMathSciNetGoogle Scholar
  8. 8.
    W. Shi and M. Xu, Algebra Colloq. 10(3), 427 (2003).MATHMathSciNetGoogle Scholar
  9. 9.
    J. S. Williams, J. Algebra 69(2), 487 (1981).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. S. Kondrat’ev, Mat. Sb. 180(6), 787 (1989).MATHGoogle Scholar
  11. 11.
    A. V. Vasil’ev, Sib. Mat. Zh. 46(3), 511 (2005).MATHGoogle Scholar
  12. 12.
    A. V. Vasiliev and E. P. Vdovin, Algebra Logika 44(6), 682 (2005).MATHMathSciNetGoogle Scholar
  13. 13.
    V. D. Mazurov, Algebra Logika 41(2), 166 (2002).MATHMathSciNetGoogle Scholar
  14. 14.
    A. V. Vasil’ev and M. A. Grechkoseeva, Sib. Mat. Zh. 46(4), 749 (2005).MATHMathSciNetGoogle Scholar
  15. 15.
    A. V. Vasilyev and M. A. Grechkoseeva, Algebra Logika 47(5), 558 (2008).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Vasil’ev
    • 1
  • M. A. Grechkoseeva
    • 1
  • V. D. Mazurov
    • 1
  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations