Doklady Mathematics

, Volume 81, Issue 1, pp 139–141 | Cite as

Variational principle for periodic orbits of invertible dynamical equations

  • V. V. Kozlov
Mathematical Physics


Periodic Solution Periodic Orbit Variational Principle Configuration Space DOKLADY Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Roy and M. W. Ovenden, Mon. Not. R. Astron. Soc. 115(1), 296–309 (1955).zbMATHGoogle Scholar
  2. 2.
    M. W. Ovenden, T. Feagin, and O. Graf, Celestial Mech. 8(2) (1974).Google Scholar
  3. 3.
    V. V. Beletskii and A. N. Shlyakhtin, Dokl. Akad. Nauk SSSR 231, 829–832 (1976).Google Scholar
  4. 4.
    V. V. Beletskii and G. V. Kasatkin, Dokl. Akad. Nauk SSSR 251, 58–62 (1980).MathSciNetGoogle Scholar
  5. 5.
    V. V. Kozlov, Dokl. Akad. Nauk SSSR 264, 567–570 (1982).MathSciNetGoogle Scholar
  6. 6.
    V. V. Kozlov, Reg. Khaot. Dinamika 2(3/4), 41–46 (1997).zbMATHGoogle Scholar
  7. 7.
    C. Simó, in The Restless Universe: Applications of N-Body Gravitational Dynamics to Planetary, Stellar, and Galactic Systems (IOP, Bristol, 2001).Google Scholar
  8. 8.
    A. Chenciner and A. Venturelli, Celestial Mech. 77(2), 139–152 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    K.-Ch. Chen, Arch. Ration. Mech. Anal. 158(4), 293–318 (2001).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Kozlov
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations