Advertisement

Doklady Mathematics

, Volume 80, Issue 1, pp 460–462 | Cite as

Recursive decomposition of multidimensional tensors

  • I. V. Oseledets
  • E. E. Tyrtyshnikov
Mathematics

Keywords

DOKLADY Mathematic Spatial Index Canonical Decomposition Recursive Decomposition Effective Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Zamarashkin, S. A. Goreinov, and E. E. Tyrtyshnikov, Dokl. Akad. Nauk 343, 151–152 (1995).MathSciNetGoogle Scholar
  2. 2.
    G. Beylkin and M. J. Mohlenkamp, Proc. Nat. Acad. Sci. USA 99, 10 246–10 251 (2002).CrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Bini and M. Capovani, SIAM J. Comput. 2, 179–203 (1987).MathSciNetGoogle Scholar
  4. 4.
    J. D. Caroll and J. J. Chang, Psychometrica 35, 283–319 (1970).CrossRefGoogle Scholar
  5. 5.
    S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, Linear Algebra Appl. 261, 1–21 (1997).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    W. Hackbush, B. N. Khoromskij, and E. E. Tyrtyshnikov, Numer. Math. 109, 365–383 (2008).CrossRefMathSciNetGoogle Scholar
  7. 7.
    R. A. Harshman, UCLA Working Papers in Phonetics 16, 1–84 (1970).Google Scholar
  8. 8.
    F. L. Hitchcock, J. Math. Phys. 6, 164–189 (1927).Google Scholar
  9. 9.
    I. Oseledets, D. Savostyanov, and E. Tyrtyshnikov, SIAM J. Matrix Anal. Appl. 30, 939–956 (2008).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. De Silva and L.-H. Lim, SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008).CrossRefMathSciNetGoogle Scholar
  11. 11.
    L. R. Tucker, Psychometrika 31, 279–311 (1966).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations