Advertisement

Doklady Mathematics

, 78:689 | Cite as

Time averaging of global attractors for nonautonomous wave equations with singularly oscillating external forces

  • M. I. Vishik
  • V. Pata
  • V. V. Chepyzhov
Mathematics

Keywords

Wave Equation External Force DOKLADY Mathematic Global Attractor Uniform Boundedness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. K. Hale and S. M. Verduyn Lunel, J. Int. Equations Appl. 2, 463–494 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. A. Il’in, Sb. Math. 187, 635–677 (1996) [Mat. Sb. 187 (5), 15–58 (1996)].zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. I. Vishik and V. V. Chepyzhov, Sb. Math. 192(1), 11–47 (2001) [Mat. Sb. 192 (1), 11–47 (2001)].zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Chepyzhov and M. I. Vishik, El. J. ESAIM: COCV 8, 467–487 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. I. Vishik and B. Fidler, Russ. Math. Surv. 57, 709–728 [Usp. Mat. Nauk 57 (4), 75–94 (2002)].Google Scholar
  6. 6.
    V. V. Chepyzhov, M. I. Vishik, and W. L. Wendland, Discrete. Cont. Dyn. Syst. 12, 27–38 (2005).zbMATHMathSciNetGoogle Scholar
  7. 7.
    S. Zelik, Proc. R. Soc. Edinburgh Sect. A 136, 1053–1097 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. I. Vishik and V. V. Chepyzhov, Math. Notes 79, 483–504 (2006) [Mat. Zametki 79, 522–545 (2006)].zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations (Nauka, Moscow, 1989; North-Holland, Amsterdam, 1992).zbMATHGoogle Scholar
  10. 10.
    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New York, 1988).zbMATHGoogle Scholar
  11. 11.
    J. K. Hale, Asymptotic Behavior of Dissipative Systems (Am. Math. Soc., Providence, 1988).zbMATHGoogle Scholar
  12. 12.
    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics (Am. Math. Soc., Providence, RI, 2002).zbMATHGoogle Scholar
  13. 13.
    J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972).Google Scholar
  14. 14.
    M. Grasselli and V. Pata, Discrete Cont. Dyn. Syst. Suppl., 351–358 (2003).Google Scholar
  15. 15.
    M. Grasselli and V. Pata, Commun. Pure Appl. Anal. 3, 849–881 (2004).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Politecnico di MilanoMilanoItaly

Personalised recommendations