Doklady Mathematics

, Volume 77, Issue 3, pp 438–440 | Cite as

On two problems of turing complexity for strongly minimal theories

  • S. S. Goncharov


DOKLADY Mathematic Countable Model Minimal Theory Elementary Diagram Turing Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy (Elsevier Sci., New York, 2000).MATHGoogle Scholar
  2. 2.
    J. T. Baldwin and A. H. Lachlan, J. Symbolic Logic 36(1), 79–96 (1971).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. A. Buechler, Essential Stability Theory (Springer-Verlag, Heidelberg, 1996).MATHGoogle Scholar
  4. 4.
    H. Keisler and C. Chang, Model Theory (North-Holland, Amsterdam, 1973; Mir, Moscow, 1977).MATHGoogle Scholar
  5. 5.
    Y. L. Ershov and S. S. Goncharov, Constructive Models: Siberian School of Algebra and Logic (Consultants Bureau, New York, 2000).MATHGoogle Scholar
  6. 6.
    E. B. Fokina, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 5(2), 78–86 (2005).Google Scholar
  7. 7.
    S. S. Goncharov, Mat. Zametki 23, 885–888 (1978).MATHMathSciNetGoogle Scholar
  8. 8.
    S. Goncharov, V. Harizanov, S. Lempp, et al., Proc. Am. Math. Soc. 131, 3901–3912 (2003).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. S. Goncharov and B. M. Khusainov, Dokl. Math. 66, 52–54 (2002) [Dokl. Akad. Nauk 385, 299–301 (2002)].MATHGoogle Scholar
  10. 10.
    L. Harrington, J. Symbol. Logic 39, 305–309 (1974).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    N. Khisamiev, Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat. 1, 83–84 (1974).Google Scholar
  12. 12.
    K. Kudaibergenov, Sib. Mat. Zh. 21(5), 155–158 (1980).MathSciNetGoogle Scholar
  13. 13.
    B. Khoussainov, A. Nies, and R. Shore, Notre Dame J. Formal Logic 38(2), 165–178 (1997).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Khoussainov, S. Lempp, M. Liskowski, and R. Solomon, Proc. Am. Math. Soc. 135, 3711–3721 (2007).MATHCrossRefGoogle Scholar
  15. 15.
    H. L. Rogers, Theory and Recursive Functions and Effective Computability (McGraw-Hill, New York, 1967; Mir, Moscow, 1972).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations