Advertisement

Doklady Mathematics

, Volume 77, Issue 2, pp 315–319 | Cite as

Exact solutions to some classes of nonlinear integral, integro-functional, and integro-differential equations

  • A. D. PolyaninEmail author
  • A. I. Zhurov
Mathematical Physics

Keywords

Integral Equation DOKLADY Mathematic Homogeneous Boundary Condition Nonlinear Integral Equation Linear Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. G. Petrovskii, Lectures on the Theory of Integral Equations (Gostekhizdat, Moscow, 1951; Graylock, Rochester, N.Y., 1957).Google Scholar
  2. 2.
    S. G. Mikhlin, Linear Integral Equations (Fizmatgiz, Moscow, 1959; Harwood Academic, London, 1961).Google Scholar
  3. 3.
    F. G. Tricomi, Integral Equations (Interscience, New York, 1957; Inostrannaya Literatura, Moscow, 1960).zbMATHGoogle Scholar
  4. 4.
    P. P. Zabreiko, A. I. Koshelev, and M. A. Krasnosel’skii, et al., Integral Equations (Nauka, Moscow, 1968) [in Russian].Google Scholar
  5. 5.
    M. L. Krasnov, A. I. Kiselev, and G. I. Makarenko, Integral Equations (Nauka, Moscow, 1968) [in Russian].Google Scholar
  6. 6.
    M. L. Krasnov, Integral Equations: Introduction to Theory (Nauka, Moscow, 1975) [in Russian].Google Scholar
  7. 7.
    F. D. Gakhov and Yu. I. Cherskii, Convolution Type Equations (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  8. 8.
    A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Codes (Naukova Dumka, Kiev, 1986) [in Russian].Google Scholar
  9. 9.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order: Theory and Applications (Nauka i Tekhnika, Minsk, 1987; Gordon and Breach, London, 1993).zbMATHGoogle Scholar
  10. 10.
    A. V. Manzhirov and A. D. Polyanin, Solution Methods for Integral Equations (Faktorial, Moscow, 1999) [in Russian].Google Scholar
  11. 11.
    A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations (Fizmatlit, Moscow, 2003) [in Russian].zbMATHGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations