Advertisement

Doklady Mathematics

, 77:170 | Cite as

Double degeneracy in the problem on unbounded branches of forced oscillations

  • A. M. Krasnosel’skiiEmail author
Mathematics
  • 24 Downloads

Keywords

Index Change DOKLADY Mathematic Critical Point Theory Differential Polynomial Odic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostekhteorizdat, Moscow, 1956; Pergamon, Oxford, 1964).Google Scholar
  2. 2.
    M. A. Krasnosel’skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis (Nauka, Moscow, 1975; Springer-Verlag, Heidelberg, 1984).Google Scholar
  3. 3.
    K. Schmitt and Z. Q. Wang, Differ. Integral Equations 4, 933–944 (1991).zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. C. Lazer and D. E. Leach, Ann. Mat. Pura Appl. 82, 49–68 (1969).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems (Springer, New York, 1989).zbMATHGoogle Scholar
  6. 6.
    A. M. Krasnosel’skii, Asymptotics of Nonlinearities and Operator Equations (Nauka, Moscow, 1992; Birkhäuser, Basel, 1995).Google Scholar
  7. 7.
    A. M. Krasnosel’skii and D. I. Rachinskii, Funkts. Anal. Ego Prilozh. 39(3), 37–53 (2005).MathSciNetGoogle Scholar
  8. 8.
    A. M. Krasnosel’skii and D. I. Rachinskii, J. Phys. Conf. Ser. 22, 93–102 (2005).CrossRefGoogle Scholar
  9. 9.
    A. M. Krasnosel’skii and J. Mawhin, Discrete Contin. Dyn. Syst. 1(2), 207–216 (1995).MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. I. Arnold, Arnold’s Problems (Fazis, Moscow, 2000) [in Russian].Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations