Advertisement

Doklady Mathematics

, 77:55 | Cite as

On stagnation zones in superslow processes

Mathematics

Keywords

Lipschitz Function DOKLADY Mathematic Generalize Boundary Condition Stagnation Zone Relative Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. M. Miklyukov, Mathematical Works (Inst. Mat. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2002) [in Russian].Google Scholar
  2. 2.
    V. M. Miklyukov, “Mathematical and Applied Analysis,” in Proceedings of Tyumen State University (Tyumen. Gos. Univ., Tyumen, 2003), Vol. 1, pp. 89–118.Google Scholar
  3. 3.
    V. M. Miklyukov, S.-S. Chow, and V. P. Solovjov, Int. J. Math. Math. Sci. 62, 3339–3356 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Proceedings of the Seminar on Superslow Processes, Ed. by V. M. Miklyukov (Volgograd. Gos. Univ., Volgograd, 2006), pp. 52–54 [in Russian].Google Scholar
  5. 5.
    Proceedings of the Seminar on Superslow Processes, Ed. by V. M. Miklyukov (Volgograd. Gos. Univ., Volgograd, 2006), pp. 40–45 [in Russian].Google Scholar
  6. 6.
    Proceedings of the Seminar on Superslow Processes, Ed. by V. M. Miklyukov (Volgograd. Gos. Univ., Volgograd, 2006), pp. 58–73 [in Russian].Google Scholar
  7. 7.
    V. M. Miklyukov, Mat. Sb. 197(11), 31–50 (2006).MathSciNetGoogle Scholar
  8. 8.
    F. Braudel, Les Jeux de L’echange: Civilisation materielle, economie et capitalisme, XV–XVII siecle (Librairie Armand Colin, Paris, 1979), Vol. 2.Google Scholar
  9. 9.
    V. M. Miklyukov, Introduction to Nonsmooth Analysis (Volgograd. Gos. Univ., Volgograd, 2006) [in Russian].Google Scholar
  10. 10.
    H. Federer, Geometric Measure Theory (Springer-Verlag, Berlin, 1969).MATHGoogle Scholar
  11. 11.
    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion (Nauka, Novosibirsk, 1982; Am. Math. Soc., Providence, 1989).Google Scholar
  12. 12.
    J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations (Clarendon, Oxford, 1993).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Laboratory of Superslow ProcessesVolgograd State UniversityVolgogradRussia

Personalised recommendations