Doklady Mathematics

, Volume 76, Issue 3, pp 958–961 | Cite as

Weak convergence of states in quantum statistical mechanics

Mathematical Physics


  1. 1.
    J. von Neumann, Z. Phys. 57, 30–70 (1929).CrossRefGoogle Scholar
  2. 2.
    V. V. Kozlov, Gibbs and Poincaré Heat Equilibria (Izhevsk, 2002) [in Russian].Google Scholar
  3. 3.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1955; Nauka, Moscow, 1964).MATHGoogle Scholar
  4. 4.
    V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 74, 910–913 (2006) [Dokl. Akad. Nauk 411, 587–590 (2006)].CrossRefGoogle Scholar
  5. 5.
    R. Alicki and M. Fannes, Quantum Dynamical Systems (Oxford Univ. Press, Oxford, 2001).MATHGoogle Scholar
  6. 6.
    M. Ohia and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Berlin, 1993).Google Scholar
  7. 7.
    A. Poincaré, in Selected Works (Nauka, Moscow, 1974), 3, pp. 385–412 [in Russian].MATHGoogle Scholar
  8. 8.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics, 2nd ed. (Wiley, New York, 1977; Mir, Moscow, 1980).MATHGoogle Scholar
  9. 9.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr., An Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1984) [in Russian].Google Scholar
  10. 10.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ. Press, New Haven, Conn., 1902; Gostekhizdat, Moscow, 1946).MATHGoogle Scholar
  11. 11.
    I. E. Farquahar, Ergodic Theory in Statistical Mechanics (London, 1964).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations