Advertisement

Doklady Mathematics

, Volume 76, Issue 3, pp 958–961 | Cite as

Weak convergence of states in quantum statistical mechanics

  • V. V. Kozlov
  • O. G. Smolyanov
Mathematical Physics

Keywords

Hilbert Space Quantum System Hamiltonian System Steklov Institute Density Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. von Neumann, Z. Phys. 57, 30–70 (1929).CrossRefGoogle Scholar
  2. 2.
    V. V. Kozlov, Gibbs and Poincaré Heat Equilibria (Izhevsk, 2002) [in Russian].Google Scholar
  3. 3.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1955; Nauka, Moscow, 1964).zbMATHGoogle Scholar
  4. 4.
    V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 74, 910–913 (2006) [Dokl. Akad. Nauk 411, 587–590 (2006)].CrossRefGoogle Scholar
  5. 5.
    R. Alicki and M. Fannes, Quantum Dynamical Systems (Oxford Univ. Press, Oxford, 2001).zbMATHGoogle Scholar
  6. 6.
    M. Ohia and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Berlin, 1993).Google Scholar
  7. 7.
    A. Poincaré, in Selected Works (Nauka, Moscow, 1974), 3, pp. 385–412 [in Russian].zbMATHGoogle Scholar
  8. 8.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics, 2nd ed. (Wiley, New York, 1977; Mir, Moscow, 1980).zbMATHGoogle Scholar
  9. 9.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr., An Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1984) [in Russian].Google Scholar
  10. 10.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ. Press, New Haven, Conn., 1902; Gostekhizdat, Moscow, 1946).zbMATHGoogle Scholar
  11. 11.
    I. E. Farquahar, Ergodic Theory in Statistical Mechanics (London, 1964).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations